C in Education and Software Engineering

R.P.Mody

Department of Computer Science,
University of Poona,
Poona 411007,
India.

1. Introduction

C has come to stay in the computingnid. Thisarticle reports the impact of this on students and teachers
of computer science as seen by a CS teacher.

Section 2 is a short history of C in our department.
Section 3 is a small set of variations on the theme of what is ‘advanced’ srt@lieedvanced.

When C is used as a medium of instruction ix@ié issues becomeverwhelmingly large in number and
significance. Whenthe irreleant becomes significant, the essentials become obscured and
incomprehensible. Section 4 is an assortment of programming trivia whichrezaking programming via

C tortuous.

After an introduction to programming via C, there are wide-ranging consequences. Section 5 is a catalogue
of such consequencek.is undoubtedly lopsided in that my concrete experience is larggivee Some

brief sorties are made into ‘might Ve beens’ but thg are generally not substantiated by mwro
experience. The are havever supported by appropriate citations from the literaturehope that the
negaive ontent will be of value to the CS teaching, practicing and research community by helping to
prevent the repetition of mistakes.

The conclusion is non-construaj emphasizing possible errors of interpretation rather than suggesting
solutions.

2. History

In 1985 UNIX entered our department. With it came C. The author was among the first batch of students
which used C. In 1987 when | joined as a junamulity, | taught C to a batch of first-year students who had

had one course in programminbagan taught the same course in 1988. As part of the continuing attempt

at teaching programming in the currently best possilalg ®@ became the medium of instruction in the
introductory programming course in 1990. Thiasiof course only one step in the imatove process, bt

the rest of the picture is not directly nedat to this article and so is not discussed further.

3. Basic pedagogic issues

It is generally accepted that advanced concepts shouldvfblsic ones. Although advanced connotes
‘hard-to-understand’, there is an important ggleint meaning :A concept is adanced when the tools for

its assimilation and use V& rot been preiously developed’. For example if a Neanderthal man cuts an
apple cleanly into ter equal halves with a sharpened stone and long nails, he performs a feat, whereas
when | do it with a kitchen knife | do not. Whether it is producing one line of ununderstandable code, or
thousands of lines of brittle unmodifiable code, the C programmer habitually performsHeatsif it is
deemed necessary to train computer scientists to become trapeze artists one wowndeirty leuch

dangerous activities should be allowed.

3.1 Cis Meta-operationally defined

Concepts in programming that can be assimilated independent of machine actions are often the easiest to
understand. Suchoncepts are called non-operational. For example the right-hand side of assignment
statements correspond to typical mathematical expressions and can be more easily understood than
concepts lik loops and gotos and interruptS. can be properly understood only when we understand the
insides of the C compilerin other words, C is not just operationally defined; it is meta-operationally
defined! Igive a ouple of proofs

1. Oneof the problems with teaching programming using compiled languages is that we must teach
concepts lik mompile-time constant as against run-tinagiable. Ifthat were all, we could perhaps
survive, but C has a whole battery of ‘constantnesses’.

#define N sizeof(int)

is allowed but
#if (sizeof(int) == N)
iS not.

The reason is that the compiler is multipass and can afford to postymbnatien of aguments of
#define but not #if . How can one explain this to a student who knows nothing of the
compilation process? Does one say that althaimgof(int) is a constant expression, the kind
of constant required b¥if is ‘more constant’?

2. Pointers
C is famous for being pointer oriented. It start§ wfth mathematical etgance by postulating 2
operations *’ and ‘&’. which are iverses of each otheifhat means that for gn'l-value’ x,
*&x = x and for ay ‘pointer-value’ p&*p = p

But consider the simple assignment:
X =Y;

To make it consistent with the treatment of locations as first-class values, it should be written as

i. &x=vy;

or

i. x = *y;
depending on whether an undecoratadable means its value or address. The solution is kludged
by defining the C semantics as "other than on the lhs of an assignment, a variable deradties'its v

This kludge does not quiteonk, because, in addition to ‘the Ihs of an assignment’ we must add
‘argument to &'.

Now the soup is getting hot because ‘& is no more an operation at all but ‘a \drdztihe
compiler’ to choose the address attribute of an object rather than its value.*

3. Expressionwith side-effects
Many begnning C programmers us& = X++; instead of x++; . In addition to being
unnecessarily long, the first one isrong; it may leare x wnchanged. Theexpression
X = x++-1 has 3 possible interpretations. T It may increment x, it may decrement x and it may
leave x inchanged. Whadctually happens depends on compilation strategy.

How does one handle such subtle semantic questions?

* Notice hav, rather than the semantics of the language defining the conthiéetanguage is defined in terms of arefus
corversations between programmer and compilEnose not prepared to beleetat clean pointer semantics are possible are
invited to study Bliss [Wulf] or Algol-68 [McG].

T known to the author; there may very well be more

1. Thevery thought of a systematic, (mathematicals@mantics for C is hamising. Ewen if it were
attempted, it would obscure rather than highlight the issues. The bigger problenertie that the
typical C programmer thereby concludes that systematic semantics is only suitablg/ for to
languages rather than concluding that C has no systematic semantics.

2. Anoperational semantics (language defined by compiler rather than the other way round) is the only
option but what if students ddrknow the insides of compilers, machines, assemblers etc? What
normally happens is :

3. Studentslon't understand at all!
The fact that C abounds with advanced features that are hard to understesdplea a number of options
for the teacher all equally unpleasant.

1. Theteacher teaches the advanced features as the need Siisasthe need arises right from day
one, (you cart’perform input unless you kmoabout pointers!) the teacher is branded as beang v
difficult.

2. Theteacher gie ©me cooked constructs and forbids use of anything not done in class. So much for
the pedagogic ideals of fostering creativity and independent study.

3. Theteacher teaches some isolatedjidtized subset and lets the students figure out subtleties and
difficulties on their own, whewer they see a feature tlyedon’t understand.

One of the most fundamental desires of a teacher is to increase the depth of understanding of the students
and to inculcate a flexible and widely applicable body ofwkedge, rather than just accumulating
accretions of soulless information into the students’ heads as thoyghdtedumb data-bases. Putting it

from the students’ point of we a gpod teacher makes difficult concepts seem easy.

Assuming that we agree with this wieone of the purposes of this paper is to indicate Komakes the
teaching of programming impossible.

3.2 Cis for the Gods
Ritchie is the imentor of C and with Thomson the covemtor of Unix. In [Shoo] thg are called ‘super
programmers’ and their rate of programming is described as a ‘significant feat.’

The preface to [Ker,Rit] says,

C wears well as ones experience with it grows.
This paper should shothat if we mak fresh students get ‘experienced’ with Cytineight well wear out
before thg get experienced.

4. Pedagogic Problems

This section is a small sample of the problems thatentegening C at the introductoryvig a harrowing
experience- both for student and teacher.

4.1 Operational Definitions

Very low-level explanations are all thatpossible in may cases
eg return &x; [* x is a local */
is invalid. Yet this can only be explained in terms of the machine stack.

4.2 Wrong programs that are right

The number of programs that should not work but still do are legion.

€g

int gcd(X, y)

int X,

{

y; / *x>=y>=1%*]

if (x==y)

return x;

else /* NOreturn* gcd(y, x%y);

This program is imalid because in one case it returns a value and in another it doedaowegver it will
compile and run silently on most systems and actually work! The explanation as usvai is ggrms of
registerallocation done by the compilerin an introductory programming course !! Further the incorrect
version is potentially more f€ient and this fact highlights a frightening definition of ‘An expert C
programmer= he/she is one who can hoodwink the C compiler!

4.3 Puns

Puns occur when similar constructsvéalssimilar meanings. Puns malearning extremely difficult for
beginners. A f&r examples are heregn:

1.

*x=0

assigns 0 to the object pointed to by x, whereas
int*x =0

assigns the NULL pointer to x

Similarly

Xx=y=0;

makes x and y equal to 0 but a declaration,
intx=y=0;

makes x and y equal to 0 but only declares x.

The', is used in a lage number of places such as macro-definition and call, function definition and
call, as an operation, separator in initializations, separator in declara@te) these uses are
mutually inconsistent. Eg.

x=1, y=x+1,
indicates sequencing, whereas
f(x=1, y=x+1);

explicitly does not wheif is a function. Iff is a macro, it all depends on the macro.

Considerthe famous, but horrendous C idiom from no less than the C text bagRitK for
copying one character array (string) to another:

while (*s++ = *t++);
Firstly, it embodies the pun ‘arrays are pointer¥his pun is pernicious because it throws cold
water on attempts to understand data-strucureslagsrather than storage structureéSecondlyit
embodies the pun ‘expressions denote values and effects’ and it requires a great deal of operational
reasoning to convince oneself that the effect is unambiguous. Then there is the triple pun that :

a. 0Ois aninteger.
b. Ois false

c. Ois the string-terminator.
In fact the pun on 0 is quadruptet is also the NULL pointer.

Surely even an asembly language coder cannot dorse in producing obfuscating code, though
he/she may produce more efficient co@eprogrammers often use this example to tout the stunning
combination of dfciency and cogeng in C. An answer to that is to consider the APL eglent:

S « t. Inaldition to being shorteend much simplerit allows the compiler to produce optimal

code without doing hairy optimizationthe code is naturally optimizable.

5. Sincegood old C is not confusing enough, the ANSI extension adds its share in the formaof a ne
keywordvoid . void is

a. thetype of a function that is not a function.

b. the type of a pointer that is semi-valid.

c. thetype of the parameters of a function, that takes no parameters.
And why, pray, will int f(); not do rather thamt f(void); ?

Because the first one, by specifying nothing allowgttdng, whereas the second by
specifying "nothing" (void) allows only nothing. All in the name of upward-compatibility!

6. SinceC does not mad life difficult enough with puns it provides meta-puns in the form of language
support for defining puns multiple name-spaces.

C uses distinct name-spaces for its identifiers. Structure tags, for instaece, di ®parate wrld
from ordinary wariables. Theollowing declaration declares a node-tygteuct list and a
pointer typdist with a clever use of forward referencing.

typedef struct list *list;

struct list {
int fld;
list next;
3

It may be confusing whichist refers to the node and which to the poinbet we can perhaps
survive D far.

C goes further and allows struct fields still another world @ lin. Thereforethe following
declaration is valid.

typedef struct list *list;

struct list {
int fld;
list list;
3

And finally, for good measure, C adds one more name-space, that of goto-labels. Thiadollo
function is walid. It has havever become confusing enough toviiller most compilers, le@ aside
human beings.

int length(list I)

inti=0;
list: if (I) {
i++;
| = | ->list;
goto list;
}
else return i;

}

There is gen more to name-spaces! See [Harb,Stl].

4.4 Nups

If a pun occurs when ‘Similar syntactic constructsehdssimilar meanings’, then there is the eese
concept ‘dissimilar (or worse, inconsistent) syntactic constructs having similar mearfihgsbunds in

5

both vulgar puns and ‘nups’.

Numericconstants are by default decimal, a preceding 0 in a numeric constant makes it octal.
Character constants hovee are by default octal, s&014’ is the same akl4’

Theaddress of a variable is obtained with an ‘&’ but for arrays and functions ‘&’ is not U$ed.
problem is compounded by implementations that patch such problems in ad-hoc ways.

4.5 ObfuscatoryProperties

1.

How about this for obfuscation:Although char denotes the set of characterspaticular
character is notehar , but anint (Oris itunsigned ?) i.e.

char x;
declares a character variable but the character conatantioes not denote a character but an int
(or unsigned depending on implementation). Them tlmesx="A’ work? Becausef casting!

If this is not confusing enough, considgetchar() , which means ‘get a character’, actually
returns an integerup does so for a different reason from the onevabd®he reason is that
getchar() which must return characters must also be able to returrvaidioharacter to signal
end-of-file, therefore the type gketchar must be one which includehar and also something
else. Ifthis is confusing, Sorry! Such is the contents of the C bibésRi]. For those who hae
been nurtured at the breast of C that askwlHdtse can input be done?’, the answer is that it is so
done only to use the following extremely opaque idiom:

while ((c=getchar()) != EOF){

}

rather than the more perspicuous

While "Eof(input)
begin
c = G etchar(input);

end

What about diciency?— the C-ers clamourAgan the answer is that the second surprisingly is
more efficient. Assuming a language déikPascal where characters are first class, the character
returned bygetchar would be directly assigned towhereas in C, there must be cast framar

toint ingetchar and a reerse cast in the caller.

Considerthis as sample of clarity: ‘The NULL pointer is the only pointer which is defined to be
invalid. Thereforea C implementation is walid if it gives a\alid pointer a value of NULL.

TheC text book [Ker,Rit] is often confusing but is sometimes confused itself! A couplearheles
are gven.

i. Onpage 49 and 191 (edition 1) it says that ‘?’ has left to right precedence whereas on page
215 it says the opposite!

ii. Considerthe following from edition 2, pg.45

In the constructiontype-name)expression the epression is converted to the named
type (by the corersion rules abwe). Theprecise meaning of a cast is as if the
expression were assigned to a variable of the specified typiich is then used in place
of the whole construction

This evidently means that in thepeessiorx = e the cast from the type efto the type of
X is built-in and therefore = (T)e (T is the type of x) is unnecessamjoweve consider
the quote [Ker,Rit] (edition 2) pg.167

The pointer returned bgalloc has the proper alignment for the object in question,
but it must be cast into the appropriate ty@e n

int *ip;

ip=(int *)calloc(n,sizeof(int));

How to reconcile these 2 statements is beyond me!

4.6 Brittle lexical and syntactic structure
Examples are:

1. #must appear in column JAdmittedly, a rumber of largely successful languages eg. BASIC and
FORTRAN are line-oriented. In C lgever, it is more hard to debug because for the most part it is
free-form and only in a fe instances is it line-oriented. This makes errors harder to spot.

2. Anumber is in base eight if it is prefixed with a 0. Therefdrés 10 but010 is 8.

3. Characteconstants are enclosed in single quotes whereas string constants are enclosed in double
guotes. Thisshould obviously mean thafAB’ is invalid. Unfortunatelyit is not invalid but
implementation-dependent.

4. CombineNup-1 with the preceding witems and we get the following anomaly: octal 101 is the
characterA’ .* In C octal numbers are written with a preceding 0 so the following prints the
character A:

printf("%c", 0101);
If however we uise’\0101’" which is consistent with the C ogamtion for octal numbers, as well
as the style used on pg. 35 of edition 1 and pg. 37 of edition 2 efRjK, we get some
implementation dependent 2-character constant.

4.7 SemantidNon-redundancy

1. if(x=1)..
is valid, lut has a meaning which is most probably not intended. This happens because both
x = 1 andx == 1 are arithmeti@xpressions

2. Thelack of a boolean type forces expression® ik <= N to be ofint type. Therefore
expressiondM <= x <= Nare semantically valid although pragmatically useless.

4.8 MessCourtesy ANSI

The ANSI standard adds a number ofdrrarities to C. The multi-meaning of ‘meaninglesgifl) has
already been cited in Pun$he enumtype is another blundeiThe idea is evidently borrowed fronagtal
but al its benefits are forfeited.

1. Enumtypes are not type-checkedhey are like integers.
2. Enumtypes may hee equivalent values. eg.

typedef enum {
red, blue,
green=0, yellow
} c olor;

definescolor to be such thaied == green andblue == yellow
3. Oneof the major uses of enumerated types asdal is to pack small fields tightly into machine
words. Thisuse is not supported by the ANSI standard.

This is a striking example of hoto get the @er-restriction of strong typingefium types not allowed in
bit-fields) along with the chaos of typelessness:

* assuming ASCII

(yellow - green ==red)

How does a teacher justify such a language feature?

5. Consequences of C as a mother-tongue

The harm done by anverly early introduction to C is large althoughvisible. C-mothettongue
programmers are life long bound to find simplegaié yet wonderfully rich ideas lig Object Oriented
Programming, functional programming, modulari@SP etc. as difficult, unnatural and ‘asheed’. If
these claims seem &lkexaggerations, it is only because of human beings’ ability to unlearn. The amount of
stuff which a C programmer knowsutsubsequently must be discarded as being operational, machine-
specific, implementation-specific, sequential-paradigm specific, contrary tist rebftware engineering
etc., is incalculably large.

Just as a C programmer finds it difficult towgropwards tevards more high lel languages, he finds it
difficult to grov downwards as well. Experience with engineers @Hs) who are first trained on
hardware, suggests that an assembly language programmer can learn C much fastervenaelycon
Surprisingly an assembly language programmer can also learn higkdrlkEnguages (eg. functional and
object oriented) more easily than expert C programmers. The reasons seem to be that

i. Assembly language programmers are acutely conscious about the drudgery whdevie
programming entails.C programmers hmever have a persistent illusion of working in a higher
level language.

ii. Theassembly language programmer has a firm foothold on computational prosessiésis/her
understanding is entirely operational.

This seems to indicate that the classicatllbierarchy:

Very High level languages
eg Lisp, Prolog, APL, Smalltalk

High level languages
eg Modula, Ada

Medium lesel languages
eg C, Pascal, Fortran, COBOL

Assembly

should be replaced by this one:

HLL's60..70 || HLL's 70..8 || HLL's 80 .. D0’s
eg Fortran, eg C, Rascal, || eg Eiffel, Scheme,
COBOL Modula Haskell, Prolog

ASSEMBLY

Moving upward is easymoving dovnward is a little harderbut moving right horizontally is next to
impossible because it does not demand increase in just knowledge tuvarteview.

Furthermore the performance profile is very different todslpng with the first figure went the dictum:
Climb the ladder of expressivity and you shall descend into the abyss of inefficiency
Today this is not true gnmore. APLis highly amenable toectorization, object-orientatioseems to be
the proper way for harnessing multiprocessors and datarflachines promise fifient realization of
functional languagesToday’s dogan has become:
Think high, think clean, andfifiency shall be added unto you.

5.1 Impacton subsequent Courses

5.1.1 Data-structures
One of the wrst hit subsequent courses after an initial C course is the data-structures course. Instead of
data structures being a study of mapping discrete structures into computer implementations, it usually
degenerates into a study of pointer-structures wherein a successful student is one who can handle ‘5-*
constructions. Iithis respect [Meyer2] says:

"I hadn't appreciated the C epidemic in the UBbegan to appreciate how bad it was when | taught

an undegraduate ‘Data Structures and Algorithms’ cearwhere wage d C was required by

department policy How could | even try to tehcsystematic algorithm deelopment when | kmethat

the bulk of the studestime was spent fighting tkg pointer arithmetic, chasing memory allocation

bugs, trying to figue cut whether an ajument was a structeror a pinter, making sue the number of

asterisks was right, and so oram draid it will be had to recover from the damge @used by C to

an entie generation of ppgrammers.”

Famous is the story of the C-fan cum Lisp-antagonist weored that Lisp is unsuitable for introducing
data-structures because ‘it possesses no data structures.

If this displays ignorance of Lisp then it is but a small hole in the knowledge of theespElakeve it
indicates a far more perniciousyilén the understanding of the speaker:

An entity is not a data structitnless it prickles lig a prcupine with pointers.
This means that an irger for example, is not a data structqiiéess it is larger thalong and hence is implemented
as a linked listy- links make data-structures.

In the field of data-structures there are a number of beautiful ideas which are perfectly simple wntheir o
right.
Here are only a fe examples.

i. Data-structureas values [Bird,Wad] [Reade] [Abel,Suss]
ii. Functionaldata-structures [Reade]
iii. Data-structuresvith logic variables [Clock,Mell]
iv. Object-oriented classification of data-structures [Meyer1]
v. lterators [Lisk,Gutt]
vi. Infinite data-structures [Bird,Wad]
vii. Parameterized Dataypes. Thenumber of references (nearly all of the @ba@nd marty more) is

too big to cite but [Goguenl1-2] are extremely interestirem ¢hough a little advanced.

For a C pogrammer all these ideas are terribly advanced, not becayser¢hanherently difficult bt
because their presentations in C, if at all possible, aroleed.

5.1.2 Algorithms
When C is the base, some concepts such as coroutines and concangerat taught at all, and somedik
back-tracking become labelled as difficult.

Although mawy will claim that the study of algorithms is language independent consider theifgjlo
definition of quicksort in Haskell:

gsort [=]

gsort (a:l) = gsort [x | xOI, x < a] ++
[a] ++
gsort [x | xO1, x=a]

In order to understand this, all we need tovkris that ‘++' is list-append and *’ i©CONSas in Lisp.
Compare this with the laborious presentatioregin most data-structure and algorithm texts.

Further the study of algorithms bifurcates into a basic study of sequential algorithms and an advanced study

9

of parallel algorithms. Those who beleethis distinction to be fundamental are invited to study the Occam
introduction [Jones,Gold], and see if within the context of Occam, a distinction between sequential
programs and parallel programs is necessary or natural. Another impresside-force is [Chan,Mish].

It demonstrates that algorithms can bevettped at such a high vuel of abstraction that the are
independent of programming paradigm and implementation architeclurey may be subsequently
refined to various machines and languaafeshich the sequential is just one possibility.

5.1.3 Assembly

If C followed assembly (or perhapsea better if they were introduced simultaneously), the students
would appreciate both and see C as a quick and safeofyproducing assemblyHoweve when C is the
initial foundation, then assembly seemeldn unnecessary labour.

5.1.4 OtherCourses

Courses lie Compiler Construction, Operating systems, DBMS and Networks are not miectedfin

their course work, but suffer indirectly in their programming assignments which are typically done in C.
This is so because the learning @ifer C is slev and much of the students’ time is spent on mastering
programming issuessen long after the introductory programming course.

5.2 SociologicalConsequences

The following cowersations are a sample of what the author often h@drg; represent what theudding
C-experts find ludicrous about the ignoramuses.

— "He put strings as case labels! Ha Ha ..."

— "She used an assignment statemsnt malloc(); wheres was astruct rather astruct
pointer! Whenl drew her attention to this she said, ‘Oh, shall | 8serather thars?’ Ha,Ha..."

These C ‘experts’ often gae me with such tit-bits.I try to tell them that these details are irvalg to
computer science, to computer programming venegood old imperatie pogramming a la BSIC,
FORTRAN and COBOL. My discomfort becomes very acute when | see that it is impossibleddherak
see what | am saying. The @pert's mind is so congested with bit-nibbling that deeper concepts find no
place.

In an environment where C is the mother-tongue, the C-expert is the-fs1d one who cannot think
crooked is labelled as one who cannot think.

5.3 Softwar Engineering Consequences

I. C supports a curious illusion of being highvde The reason seems to be that typical Unix
environments ha good supporting softare. Thishowever does not ma C high level.

II. Cis versatile. Ier example, C functions can be used for using a functional style, separate source
files can be used for modulatitf struct s containing function pointers can be used to simulate
an object-oriented style, laxity of function types along with intereaability of pointers can be
used to ma& generic functions and much more.

This may be &ry good in a wrk-ervironment where a single powerful language should be
emphasized. Iran educational environment Wever, this has a rgative influence because the
essential ideas become twisted when represented Tlh€fresh students see twistedness very early
and belige it to be he lav of life rather than a quirk of current technolog¢mong the ramples
mentioned abee | cnsider a couple:

- Functional style:
A devaed C programmer may very well say that C is functional or altgshgtithat the
functionality of C is enough because C has functions. It is hard to convince such, that when
heap allocated pointer types are returned by functions, the global connectivity of the program

10

drastically increases (the module which allocates space may not be in a position to free it
when the need arises). Therefore functional decomposition as supported in functional
languages is not truly supported in C.

Modularity

Because C offers no notion of modularity other than the use of separate files, C programmers
easily belige that modularity means puttingasious pieces of code into separate filébe
fallacies in this approach are:

— Files are an operating system concept. Modules are a programming language concept.
Simulation of one by the other is more cumbersome and error-prone than direct support.

— The C mechanism for connecting different modules is ‘hefildst. A header-file
invariably contains all sorts of information which should ideally be hidden and is therefore
against the principle of information hiding. The inclusion of header files is therefore an
invitation to anarch

In short, although the fact that C can dergthing is readily recognized, the fact thatiites most
things poorlyis rarely noticed.

C programmers heae a vey low capacity for abstract thinking because the abstraction mechanisms
provided by C are weak. The effect is seen when students present extremely C-specific designs:
The examples range from small thingsdikaying, name is of typechar * ’rather thannameis

a dring’, to believing that the C/UNIX paradigm is an eterrglity, rather than seeing it as just one
possible implementation environment.

The type structure of C inculcates habits that inhibit clear understanding. Theextpe ofchar
andint has already been mentioneBar more detrimental to the ability to think clean is the
absence of a boolean type.

The importance of the boolean type is obvious whether we consider it as central to logic or whether
we consider it to be the heart of digital systermbe inability of students to think with boolean
values as values in their own right shows up when students almagsakrite

odd(int x)
if (x%2 == 1)

return 1;
else return 0O;

}

rather than the simpleshorter more efficient and more understandable

boolean odd(int x)

{
}

return x%2 == 1;

The invisible lnt greater problem with no boolean type is that not understanding boolean operations
as operations in their own right mesk students that much further intellectuaftpm program
verification which is usually based on predicate calculus [Gries].

The bad décts of pointers has already been mentioned but bears repetition. [Wirth] is a thoughtful
evduation on the problems of pointers, [Hoare] is more blunt:

Their introduction (pointers) into high-level langyes has been a step blaward from which

we may never recover.
The typical C programmer equates pointers to data-structures rather than seeingldbatnot

11

support ag data-structures other than scalars and that pointers are a posranaldtion for real
data-structures.

V. C perpetuates mara oftware-engineering myth. Some examples:

VI.

1. Programmindin-the-large’ is something diérent from programming ‘in-the-small’ and is
terribly difficult. Onecan find a variety of answers to this problem:

— Ada which is geared wards large scale systems

— Eiffel which has Ada-lik constructs for large scale software but allows highly generic
software to be deloped so that size may be reduced.

— APL wherein large-scale programming usually becomes unnecessary because of the
tremendous xpressvity of the language. The greatest tribute to the language is tlse:ab
‘It is not a language for serious software engineériijost APL users are not computer
scientists but general users ranging fromgitists to economists to school teachéerhey
survive without the expensge rvices of software-engineers mainly because of APL.

— Lisp which encourages a metadestyle. For ary non-trivial problem a suitable base
language is designed and embedded within Lisp. KpereLisp programmer is one who
formulates a coherent body ofwadeas which he uses to build his own littlerd.
Although this may be contrary to the usual software-engineering dogma which says that
good code is stereo-typed code, it works very well because it usually obviates the very need
for software-engineering. ALisp programmer can produce what a battery of C
programmers cannot [Stall].

The fact that C is unsuitable for ¢grscale software delopment does not imply that te-
scale software delopment is very difficult.

2. Systematisoftware verification is a mathematiciauaream.

Again this is only true because we are considerarifigation of software written in C-lik
languages. Somexamples of success stories are:

— Functional and logic languages which, compared to C, are self-documenting and self-
verifying

— Eiffel which incorporates a small assertion languafjeese assertions can be turned
on with a compilation switch.This is an important step in combining systematic proof
techniques with traditional debugging.

Large bodies of Pragmatics

Software engineers are often inculcated with a number of ‘guidelines’ such as
(i) indent your programs (i) comment your programs

and mag more.

Most of these rules can easily be incorporated into programming languages. An example is Occam
wherein indentation and minimal commenting is requipgdthe systemThis means that mgn

such rules of thumb (which programmersvarbially break) can be completely dispensed with by
making them part of the languag€or examples of wise pragmatics that become obsolete with
improved programming languages, consultgiPlau]. It contains may suggestions relant to

Fortran but irreleant in C.

An example of hev pragmatics increase because of poor language design is C++[Strou]. The C++
manifesto is twofold:

12

i. tobe a proper superset of C

ii. To support object-orientation

Since C is lav levd and object orientation is an inherently highvde concept the result is
conceptually incoherent. [Strou] is full of weak dirgesi such as
Macros {define) are dmost never necessary in C++; usmnst or enum to define
manifest constants, anline to avoid function calling overhead.
Why haveMacros then? Because of item (i) of the manifesto.

VII. The greatest impact is on the students as future computer scientists.

C is the relic of an era when theesage machine was 10 timeswkr and most memories were 100
times smaller than what is generally found todaye typical C programmer objects to modern
languages supporting storage management, first-claksesy persistent objects, transparent
concurreng and other such forward-looking concepts usually on grounddiofegfty. This is \ery

similar to a FORTRAN-1 programmer objecting to structured constructs because of the same
reasons. lEomputing depends on such retrognesgirces we will all get stuck.

The property of C being weakly-typed andrenifiable along with thexastence of good delggers,
is creating a generation of terminal-hooked hackers who carmgdeb 3 days but cannot use pen
and paper for an hour.

6. Conclusion

In keeping with the rgetive girit of this paperno mnstructve lution is being proposed. This attitude
may be justified by saying that it is important to diagnose a disease before we treat it.

A possible suggestion which manomputer scientists might read into the artieléo teach a respectable
language like Pascal or Modula- is not being suggested. admit that Pascal or Modula as a first language
would certainly mak it easier to learn programming than C. The problenvdver is that the most fertile
areas of today would remain in the realm of theaaded, whereas the obsolete paradigms would be
consolidated.

The Occam programmer finds parallelly running sequential programs natural, ML and APL programmers
use a highly mathematical style of programming as though it were their right, the Eiffel programmer does
not only talk about (and write PhD theses on) abstract data typassds them in his/her day to dagn

the Scheme programmer swims easily in a beautifully homogenewid af data-structures ranging from
integers to lists to functions to exotica such as environments and continuations.

| quote from the Occam introduction: [Jones,Gold]
It used to be that writing a pgram neant finding a strict sequence of steps toiewe the desired end.
. theimportant thing that we show in this book is ... that paralleigpams can be simpler to write
and understand than sequentiabgrams that achieve the same effect.

It may be surprising to most that parallel programmingdse natural than sequential programmingjtb
there it is. The small price we are required to pay is to ‘think in Occam'.

A number of other books maksmilar claims for functional, object-oriented and other promising
paradigms. eg. [Meyerl], [Abel,Suss], [Spr,Fried],if8y. All these claims can be summarized as: ‘The
appropriate notation helps one to think clearlywo forceful demonstrations of this claim are [Iver] and
[Gast]. Thatthese authors vindicate this claim can be verified by anyone who would care to read this
material. lam not sure whether there exists a consistent simple combination of all these rich possibilities.
([Goguen2] might be an answer in the peositiirection). 1do feel havever that to say’Since | cannot get

the best caviarchinese food and steak at the same restaurant, | shall starve!’ seems to be unreasonable.

There are those whoowld object saying, ‘W teach language independent problem-solviAg answer to

13

this is to be found in the excellent programming text-book [Myers]:
This normally means that ggrams ae first outlined in a pseudo-code whictrongly resembles
Pascal, Algol, Ada, PL/1 or Modula-2 but not Lisp, APL, Prolog or ML. Pidgin Pascal is no mer
language ndependent than Pidgin APL would be; it may well beemseful, but neither is a
specification languge The crucial omission is specification ...

He admits howeer, that his text is best supplemented with ML, KRC or Scheme.

Having said this, | should add that incorporating a courderegramming Rradigmsis pernicious because

by its very nature the course becomes araackd course whereas functional, object-oriented and other
such programming paradigmsvieaeen introduced teeducethe compleity associated with von Neumann
programming. Thigourse would perpetuate the situation in whioh Weumann languages are considered
proper and the others are considenrahagarde.

| end with a disclaimer.

This article might easily be misinterpreted as saying that the author doesr@t Tikis is not true.l have
written non-trivial applications in C and enjoyed doing it. If complaint | mustendkere are the
following:

I. | deprecate the Computer Science educators who do not distinguish between the lasting and the
ephemeral. Herkrefer to the common confusion between programming, and coding into language
X, whatever that X may be.

II. | deplore the computer scientists who cannot discriminate between the real causes behind a success
and incidental details. Here | refer to the C/Unix success story.

By elegant example, the imentors of Unix demonstrated a number of things. The scenario seen
today in the computer world indicates that jmaomputer scientists ke mwmpletely missed these
lessons. Rathewrong ideas are deified into eternal truther example:

1. They showed that operating systemvaopment which was traditionally done at no higher
than assembly \el, could be done at a much higherdie

Yet today applications are being reduced to C, that wendqusy dereloped at a higher
level.

2. The showed that a workable, ‘real’ highue language need not be unduly compteC
used for Unix is simpler than PL/1 used for Multics.

However new languages continue to get more and more complex.

3. They demonstrated a ‘tools approach’ to softwaredtgment. Thg showed that it is often
profitable to deelop an appropriate tool for sizable applicatiens for Unix — than to mak
do with available resources ven if the total work seems to increase.

Ironically, C has become the name of therifig-Tarpit. In the name of &fiengy, portability
or some other such software-engineering buardw Cis used for eerything.

4. Unix sports an audacious and in fact brazen dadefor eficieng. For example the
directory list commands , starts up an entire process. If this were integrated into the shell,
it would easily be an order of magnitudester Howeve it is precisely this unconcern for
efficieng/ that makes Unix so soft on the software engineer.

Yet, in spite of the tremendous increase in machine power and in spiterafelming
evidence that software quality and programmer prodifgtiare sgerely impaired by a
misguided concern for efficiepcprogrammers compulgily continue to count clock-cycles.

lll. | am appalled at the monstrous messes that computer scientists can produce under the name of
‘improvements’. Itis to eforts such as C++ that | here reféthese artifacts are filled with frills
and features but lack coherence, simpljcityderstandability and implementabilityf computer
scientists could see that art is at the root of the best science, such ugly creaturesveotddtene

14

birth.

15

7. References

The references are partitioned into 2 sectiofise first contains text-books that are excellent in quality and
highly readable een for junior students.They are nevertheless unknen to most of todag CS sudents
because thedon't fit into the obsolete model of CS education that is generally tsaud thg are
therefore unknown to tomoms computer scientistsTo daim that these excellent texts are unknown to
today’s computer scientists because of C, may seem abstiwmdiever it is a fact that the finiteness of CS
course lenghts, along with pressures of learning C, preclude sufficiposuse to this rich body of
literature.

7.1 Introductory Texts

[Abel,Suss] AbelsonH. and Sussman, G.J.; Structure And Interpretation Of Computer Programs. MIT
Press 1985

[Bird,Wad] Bird, R. and WadlePR; Introduction B Functional Programming. Prentice Hall 1988
[Chan,Mish] ChandyK.M. and Mishra, J.; Parallel Programming: A Foundation. Addison Wé&SigS
[Clock,Mell] Clocksin, W.Fand Mellish, C.S.; Programming In Prolog. Springer Verlag 1984
[Gries] Gries, D.; The Science of Programming. Springer Verlag 1981

[Jones,Gold] Jones, G. and Goldsmith, M.; Programming in Occam2. Prentice Hall 1988

[Lisk,Gutt] Liskov, B. and Guttag, J.; Abstraction And Specification In Programeogment. MIT Press
1986

[Meyerl] Meyer B.; Object-Oriented Software Construction. Prentice Hall International 1988
[Myers] Myers, T.J.; Equations Models and Programs. Prentice Hall 1988

[Reade] Reade; Elements of Functional Programming. Addison Y\E38

[Spr,Fried] Springer Friedman; Scheme & the Art of Programming. MIT Press 1989

[Wiks] Wikstrom, A.; Functional Programming using Standard ML. Prentice Hall 1988

7.2 Others

[Gast] van Gasteren, A; On the shape of mathematicgluents. Ph.DThesis, Technical Uwérsity
Eindhoven 1988.

[Goguenl] Goguen].A.; Principles of Parameterized Programming. Software Reusability: Vol. 1 Concepts
and Models. Eds. Biggerstaff, T.J. and Perlis, A.J. Addison Wé&sSg9

[Goguen2] Goguen].A.; Unifying Functional, Object-Oriented, and Relational Programming with Logical
Semantics. Research Directions in Object Oriented Programming. EdsgerSBriand Wegner, P
MIT Press 1987

[Harb,Stl] Harbison, S.Rnd Steele G.L.; C : A Reference Manual. Prentice Hall International 1987

[Hoare] HoareC.A.R.; Hints on Programming Language Design. Sigact/Sigplan Symposium on Principles
of Programming Language 1973

[Ilver] Iverson, K.; Notation as tool for thought. 1979 ACM Turingatd Lecture. CACM August 1980

[Ker,Rit] Kernighan, B. and Ritchie, D.; The C Programming Language. Prentice Hall, First Edition 1978,
Second Edition 1989

[Ker,Plau] Kernighan, B. and Plaug&J.; The Elements of Programming Style. MofHill 1978
[McG] McGettrick, A. D.; ALGOL 68 a first and second course. Cambridgeddsity Press 1978
[Meyer2] Meyer B.; Corversation with Bertrand MeyedOOP May/June 1989

16

[Shoo] Shooman, M.L.; Software Engineering. Megkdill 1983

[Stall] Stallman, R.M.; EMACS: The Extensible, Customizable, Self-Documenting Display Editor
Interactve Fogramming Environments. Ed Barstet. al. McGrav Hill 1986

[Strou] Stroustrup; The C++ programming Language. Addison Wé&Sk6
[Wirth] Wirth, N.; On the design of Programming Languages. Proc. IFIP Congress 74 North Holland
[Wulf] Wulf, W.A. et. al.; Bliss a language for systems programming. CACM Dec. 1971

17

