
Data Structures and Algorithms
1. Aims and Objectives

• To distinguish between and be able to relate the high level (mathematical) world of data structures
and the low lev el (engineering) world of storage structures.

• To dev elop a vocabulary for algebraic manipulation of data structures and a calculus of systematic
refinement to algorithms and storage structures in the low lev el world of C and machines.

• To round off the foundations laid in IP and MF by engineering slightly bigger software on realistic
computer systems.

2. Course Overview

Algebraic View Algorithmic View

Data Data Structures
Mathematical Definitions,
laws, manipulations
MF relations

Storage Structures
Engineering
Considerations Related to
CO, LLP

Code Recursive and closed form
program specification
May be implementable in
a high level language like
gofer or may not be
implementable directly
The intrinsic value of
specification apart from
programs

Explicit control through
built-in control structures
like sequencing, if, while
Engineering efficient
implementation of correct
specifications

3. Course Contents

The course is organized according to the philosophy in the table below. The case studies/examples include
but need not be limited to

Lists: Various types of representations.
Applications: symbol tables, polynomials, OS task queues etc

Trees: Search,Balanced, Red Black, Expression. Hash Tables
Applications: Parsers and Parser generators, interpreters, syntax extenders

Disciplines: Stack,queue etc and uses

Sorting and Searching: Specification and multiple refinements to alternative algorithms

Polymorpic structures: Implementations (links with PP course)

Complexity: Space-timecomplexity corresponds to element-reduction counts. Solving simple recurrences



4. Course Organization

Algebraic world Algorithmicworld

Correctness BirdLaws, Category Theory Refinement, Predicates

Transformation viaMorgan Refinement

ADTs and
Views

— Formulation as recursive datatypes

— Data structure invariants

— Principles of interface design

— Algebraic Laws

— C-storage:

— Representation Invariants

— Addressing Semantics

— Use of struct, union and other assorted
C stuff

— Maximising abstraction by macros,
enums etc

Mapping viatransforms and coupling invariants

Code
— Pattern Matching based recursive

definitions

— Exhaustive set of disjoint patterns
correspond to total functions

— Correspond to runtime bug-free
programs

— Recursive Code structures follow from
recursive data structures

— Refinement of recursive definitions
into iterative algorithms

— Techniques (Bentley) for improving
algorithms eg sentinel, double
pointers, loop condition reduction,
strength reduction etc

Continuations
— Control as Data

— Coroutines vs subroutines

— General framework for escape
procedures, error handling

— Loops

— functions@

— Stack based software architecture

Error Policy
— Types

— Patterns

— Laws

— Deliberate Partiality

Predicate Transformer Semantics for control

Modules Category Theory Files, make

5. Bibliography

1. DataStructures and Algorithms; Aho, Hopcroft and Ullman, Addison Wesley Inc.

2. DataStructures; Kruse; Prentice Hall

3. Programmingfrom Specifications; Carroll Morgan; Prentice Hall

4. Algebraof Programs; Bird; Prentice Hall

5. ProgrammingPerls, Writing Efficient Programs; John Bentley; Prentice Hall

6. Structureand Interpretation of Computer Programs; Abelson Sussmann; MIT Press

7. FunctionalProgramming; Henderson; Prentice Hall

8. TheArt of Programming Vol 1. & Vol 3; D. E. Knuth, Addison Wesley Inc.


