
The Application Operator
A Thought-Dialogue with E. W. Dijkstra

Haskeller: Considering that mathematics,
formalization, elegance, provability and so on
have been the hall-marks of your work, why do
you still stick to the antiquated imperative
paradigm?
EWD: What I am sticking to ... I am not very sure
...
It is very important to me that the language we
use to talk in and communicate with be
perspicuous. Allexpressions should satisfy the
Leibniz property that equals may be substituted
for equals, or, as you would say (pompously) they
should be referentially transparent, functions
should be first-class, (end pompously) above all
application plays the primary role ...
Haskeller: WHOA! Hold it! You are
misappropriating our religion! In Haskell all
expressions are referentially transparent and
functions are first-class.
EWD: Maybe semantically. Not syntactically.
Haskeller: What do you mean by ‘‘syntactically
referentially opaque?’’
EWD: No I was not referring to referential
transparency. I was referring to first-classness.
Haskeller: You mean that in Haskell although
functions are semantically first-class they are not
first-class syntactically?
EWD: Yes.
Haskeller: Can you explain this bizarre notion of
yours?
EWD: Well I’ll try... You are so devoted to your
favourite functional language that if I show you
the problem directly you will not be able to see
it... So let me start with trivial examples. Letus
take school algebra. Look at the expression
xy + 2xz What is betweenx andy?
Haskeller: Nothing.
EWD: But something is intended?
Haskeller: Of course! Multiplication.
EWD: Does your beloved Haskell allow such
expressions?
Haskeller: Of course not!
EWD: Why?
Haskeller: It is highly irregular− for addition the
symbol + but for multiplication nothing.
EWD: But the traditional mathematicians use this
elision of symbols?
Haskeller: Maybe so.But it compromises clean
semantics and finally first-classness.
EWD: Why?
Haskeller: The traditional mathematician would
have trouble referring to multiplication. Either he

would have to use a symbol that he does not
normally use or he would have to say, ‘‘The
nothing betweenx andy.’’
EWD: So semantics are not clean.But how does
that spoil first-classness?
Haskeller: If something has no syntactic form we
cant talk of its semantic properties. At least in
FORTRAN, Pascal or C we can say: ‘‘+ and *
may not be passed into or returned from
functions.’’ H ow is the traditional mathematician
to say it? ‘‘ The nothing betweenx and y —
which, mind, is different from the nothing
betweeny and+ — cannot be passed ...’’ ?
EWD: So if something is not syntax, it cannot
denote. Ifit cannot denote, it cannot be first-class
or otherwise. Right?
Haskeller: Yes, but I don’t see what that has to do
with Haskell.
EWD: All in good time. But will you allow me
to cite one more example − concatenation in
SNOBOL or awk?
Haskeller: (Jumping) It is the same thing.
Elision denotes string concatenation. Since such
concatenation is very frequent in these languages,
it may be convenient in the specialized context of
these languages but the same problems as with
school-algebra arises. Nothing is used to denote
concatenation; hence we cannot talk of its first-
classness.
EWD: Yet you claim that functions are first-class
in your so-called functional language?
Haskeller: But of course! Any identifier
(including an operator symbol) can denote a
function. Andsuch a function may be passed in
and returned and stored and ...
EWD: Slowly. Slowly. You are mouthing all the
usual FP indoctrination which is all very well.
But let us go back to our two examples.
An important operator− multiplication− is elided
from arithmetic expressions. Thatcompromises
first-classness. Right?
Haskeller: Right.
EWD: The most important operator in awk and
SNOBOL is elided. That compromises first-
classness. Right?
Haskeller: Right.
EWD: What is the most important operator in
Haskell?
Haskeller: (Beaming) There is no ‘most-
important-operator’ in Haskell. Everything is
equal. Everything is uniform.That is first-
classness.

EWD: Spare me the advertisement. Lookbefore
you brag. Look at the Haskell expression
map (1 +) xs

What is between1 and+?
Haskeller: Space.
EWD: And what does it denote?
Haskeller: Nothing.
EWD: And what is between+ and)?
Haskeller: Space.
EWD: And what does it denote?
Haskeller: Nothing.
EWD: And what is betweenmap and(?
Haskeller: Space.
EWD: And what does it denote?
Haskeller: Application.
EWD: Aha! Thereyou are!
Haskeller: What do you mean ‘‘There you are!’’
Application is the most important concept in
functional programming languages.How can you
write a program without it?
EWD: (Laughing) So there is a most important
operator after all!
Haskeller: (Irritated) Its not an operator. Its the
fundamental glue for binding together any
functional program.
EWD: Just as concatenation is the glue in
SNOBOL and awk?
Haskeller: (Gulp) Er ... I ... I am not sure what
you are driving at ...
EWD: I am sorry to be harsh with you but the
fact is that in Haskell, functions are given poorer
treatment than say in C.In C, as in traditional
mathematics, at least the parenthesis surrounding
the parameter list denotes function application.In
Haskell you have nothing.
Haskeller: This is going too far. You cannot
handle a function in C with anything like
Haskell’s power. And you can never create a
function at all.
EWD: (Laughing) I was only pulling your leg. In
Haskell nothing denotes application, in C (as in
traditional mathematics) parenthesisation is
overloaded, sometimes it parenthesises,
sometimes it denotes function application.Each
is worse than the other. Anyway we were talking
of syntax, remember?
Haskeller: If i ts only a question of syntax then
you can define an apply operator. Hudak does it in
the Haskell tutorial using a$. Thus:
f $ x = f x

Then you can use$ wherever you want to make
application explicit.
EWD: Hmm... canyou write the definition?
length$[] = 0

Haskeller: Of course.
EWD: Are you sure?
Haskeller: Yes.

EWD: Then how does Haskell distinguish
between the first definition which defines$ and
the second which uses$ to definelength?
Haskeller: (Gulp) Er... No you cannot use a$ on
the lhs.
EWD: (Laughing) So you are a traditional
mathematician after all. Sometimes he writesxy,
sometimesx×y and sometimesx ⋅ y. In the same
way you sometimes writef x and sometimes
f$x
Haskeller: Well OK. So what do you think the
syntax should be?
EWD: Simple. If application is the central
concept in functional programming languages and
regularity is a cardinal design principle (I hope it
is!) then application must always be explicit.
Haskeller: Do you want us to write?
length$(x:xs) = 1 + length$xs

EWD: Um...
Haskeller: I find the$s ugly!
EWD: The$s are your choice.
Haskeller: (Exasperated) But then what do you
want?
EWD: This is a question on design... Application
must show but it must not dominate.This calls
for an operator that even when ubiquitous, will
not overwhelm. For myself, after I realised that
functions and application are being given second-
class treatment in computing science, (and that is
because of the bad habits we inherit from
mathematicians) I have started using a dot for this
purpose. Thus:map. (1+). xs
Haskeller: Does not look very regular to me.
Why is there no dot between 1 and+?
EWD: Oh that’s easy. map. ((+). 1).l In fact for
any operator * we may define sections by
postulating the following as equal.

x * y
(x*). y
(* y). x
(*). x. y

We treat the others as short-forms for the last.
Haskeller: I am somehow very uneasy ...
EWD: Why?
Haskeller: In Haskell we already use the dot for
composition. What do we do then for
composition?
EWD: Hmm ... As I said this is a matter of design
... I do not know your Haskell very well but is it
not true that you use indentation to demarcate
blocks, individual elements of blocks and the
like?
Haskeller: (Warily) Yes, and what is wrong with
that?
EWD: O nothing! It is good, very good. A
language that makes clean programming

mandatory is good. I asked because if the
semicolon is free you could use it to denote
composition, you could even define it in
diagrammatical order thus:

(f ; g). x = g. (f . x)
Haskeller: But the semicolon is not free, sorry. It
is allowed as an explicit alternative to separate
declarations.
EWD: (Puzzled) But you just said that
indentation is used for that purpose?
Haskeller: You may use indentation or you may
use braces and semicolons. Its the programmer’s
choice.
EWD: (Laughing) Like choosing a hot-dog or a
sandwich at a fast-food restaurant?
Haskeller: What is wrong with allowing the
programmer some choice?
EWD: Well then why not allow him some more
choice? Like assignments, pointers, gotos...?
Haskeller: Ridicule me if you like ... Yes I’ve got
it! Thereis a serious problem with application as
a first-class operator. If application is itself an
operator it can itself be sectioned.Then we are in
trouble if we listen to you.Or are you suggesting
that application be an exception to the rule and
not be allowed in sections? That would be an
ugly wart on the face of Haskell.
EWD: I nev er suggested making application
special. Sectioningit gives some nice results.
Here is one for the left-section:

f
by η-abstraction

= λ x → f . x
left sectioning the dot

= λ x → (f .). x
by η-reduction

= (f .)

Haskeller: What does this mean?
EWD: It has a profound significance.I says that
a function is nothing more than what it means to
apply it.
Haskeller: Ok. What about the right section.I
cannot see what use that may be put to.
EWD: On the contrary it has many practical uses
Here is one. The functionpam (converse ofmap)
has the following informal specification

pam. x. [f1, f2, . . . fn] = [f1. x, f2. x, . . . fn. x]
Using the right-sectioned dot it is easily defined
as:

pam. x. fl = map. (. x). fl
It would be much harder to discover this if the
application were not evident in the specification.

Also the first result can be generalised as
f = (f .) = ((f .).) = . . .

Haskeller: pam is nice but the last is horrible.

How do we implement it?
EWD: Do you have trouble implementing+ just
becausex = x + 0 = x + 0 + 0 = . . . ?
Or do you have trouble implementing Hindu-
Arabic numerals just because we can write 3 as
03 or 003 or. . .?
Haskeller: I’l l accept if you can give me a use for
the full-section.
EWD: Do you accept that one of the chief
benefits of λ-calculus is that higher-order
relations of profound significance can be
expressed asλ-expressions? eg The fact that
functions can be written in curried or tupled
notation can be expressed in the object notation in
terms of the combinators:curry anduncurry?
Haskeller: Sure
EWD: How would you express the idea of
application?
Haskeller: apply = λ x y → x y
EWD: I would write that asapply = λ x y → x. y
Haskeller: What’s the advantage?
EWD: For one thing it is very clear that thexy to
the left of the→ is just syntax whereas to the
right we are denoting something.Better still
observe the following proof.

apply
by definition

= λ x y → x. y
by definition of full section

= λ x y → (.). x. y
by left-associative convention

= λ x y → ((.). x). y
by η-reduction

= λ x → ((.). x)
by η-reduction

= (.)

Which brings us back to where we started.
Application is denoted by a symbol.And the
calculus is enough to arrive at it.

