The Application Operator
A Thought-Dialogue with E. W. Dijkstra

Haskeller: Considering that mathematics,
formalization, elgance, preability and so on
have been the hall-marks of yourosk, why do
you still stick to the antiquated imperati
paradigm?

EWD: What | am sticking to ... | am not very sure

It is very important to me that the language we
use to talk in and communicate with be
perspicuous. Allexpressions should satisfy the
Leibniz property that equals may be substituted
for equals, aras you would say gompously) they
should be referentially transparent, functions
should be first-classgefd pompously) above dl
application plays the primary role ...

Haskeller: WHOA! Hold it! You ae
misappropriating our religion! In Haskell all
expressions are referentially transparent and
functions are first-class.

EWD: Maybe semanticallyNot syntactically.
Haskeller: What do you mean bysyntactically
referentially opaque?”

EWD: No | was not referring to referential
transpareng | was referring to first-classness.
Haskeller: You mean that in Haskell although
functions are semantically first-class ytreee not
first-class syntactically?

EWD: Yes.

Haskeller: Can you explain this bizarre notion of
yours?

EWD: Well I'll try... You are so deoted to your
favourite functional language that if | slhoyou
the problem directly you will not be able to see
it... So let me start with trial examples. Letus
take <hool algebra. Look at the gpression
Xy + 2xz What is betweex andy?

Haskeller: Nothing.

EWD: But something is intended?

Haskeller: Of course! Multiplication.

EWD: Does your beleed Haslell allow such
expressions?

Haskeller: Of course not!

EWD: Why?

Haskeller: It is highly irregular— for addition the
symbol + but for multiplication nothing.

EWD: But the traditional mathematicians use this
elision of symbols?

Haskeller: Maybe so.But it compromises clean
semantics and finally first-classness.

EWD: Why?

Haskeller: The traditional mathematicianownld
have trouble referring to multiplication. Either he

would hare © use a symbol that he does not
normally use or he ould hare © [y, “The
nothing betweex andy.”

EWD: So £mantics are not cleaBut hov does
that spoil first-classness?

Haskeller: If something has no syntactic form we
cant talk of its semantic properties. At least in
FORTRAN, Pascal or C we can say: “+ and *
may not be passed into or returned from
functions! How is the traditional mathematician
to say it? “The nothing betweerx and y —
which, mind, is diferent from the nothing
betweeny and+ — cannot be passed’.?.

EWD: So if something is not syntax, it cannot
denote. [fit cannot denote, it cannot be first-class
or otherwise. Right?

Haskeller: Yes, but | dort’see what that has to do
with Haskell.

EWD: All in good time. But will you allew me

to cite one more xample — concatenation in
SNOBOL or awk?

Haskeller: (Jumping) It is the same thing.
Elision denotes string concatenation. Since such
concatenation isery frequent in these languages,
it may be cowenient in the specialized context of
these languages but the same problems as with
school-algebra arises. Nothing is used to denote
concatenation; hence we cannot talk of its first-
classness.

EWD: Yet you claim that functions are first-class
in your so-called functional language?

Haskeller: But of course! Any identifier
(including an operator symbol) can denote a
function. Andsuch a function may be passed in
and returned and stored and ...

EWD: Slowly. Sowly. You are mouthing all the
usual FP indoctrination which is allery well.
But let us go back to our twexamples.

An important operator multiplication - is elided
from arithmetic &pressions. Thatompromises
first-classness. Right?

Haskeller: Right.

EWD: The most important operator invk and
SNOBOL is elided. That compromises first-
classness. Right?

Haskeller: Right.

EWD: What is the most important operator in
Haskell?

Haskeller: (Beaming) There is no ‘most-
important-operator’ in Hasll. Ewerything is
equal. Everything is uniform.That is first-
classness.

EWD: Spare me the advtisement. Loolbefore
you brag. Look at the Haskell expression

map (1 +) xs
What is betweed and+?
Haskeller: Space.
EWD: And what does it denote?
Haskeller: Nothing.
EWD: And what is betweet and) ?
Haskeller: Space.
EWD: And what does it denote?
Haskeller: Nothing.
EWD: And what is betweemap and(?
Haskeller: Space.
EWD: And what does it denote?
Haskeller: Application.
EWD: Aha! Thereyou are!
Haskeller: What do you meariThere you are!’
Application is the most important concept in
functional programming languagesklow can you
write a program without it?
EWD: (Laughing) So there is a most important
operator after alll
Haskeller: (Irritated) Its not an operatorlts the
fundamental glue for binding together yan
functional program.
EWD: Just as concatenation is the glue in
SNOBOL and awk?
Haskeller: (Gulp) Er ... | ... | am not sure what
you are driving at ...
EWD: | am orry to be harsh with you but the
fact is that in Haskell, functions arevgn poorer
treatment than say in Cln C, as in traditional

mathematics, at least the parenthesis surrounding

the parameter list denotes function applicatibm.
Haskell you hee rothing.
Haskeller: This is going too dr. You cannot
handle a function in C with anything &k
Haskells power. And you can ner create a
function at all.
EWD: (Laughing) | was only pulling your lg. In
Haslell nothing denotes application, in C (as in
traditional mathematics) parenthesisation is
overloaded, sometimes it parenthesises,
sometimes it denotes function applicatioBach
is worse than the otheAnyway we were talking
of syntax, remember?
Haskeller: If its only a question of syntax then
you can define an apply operatdudak does it in
the Haskell tutorial using . Thus:
f $x = f x
Then you can us8 wherever you want to mak
application explicit.
EWD: Hmm... caryou write the definition?
length$[] =0
Haskeller: Of course.
EWD: Are you sure?
Haskeller: Yes.

EWD: Then hev does Haskell distinguish
between the first definition which defingsand
the second which usé&sto definel engt h?
Haskeller: (Gulp) Er... No you cannot use$&on
the lhs.
EWD: (Laughing) So you are a traditional
mathematician after all. Sometimes he wrixgs
sometimesxxy and sometimes Cy. In the same
way you sometimes writd x and sometimes
f $x
Haskeller: Well OK. So what do you think the
syntax should be?
EWD: Simple. If application is the central
concept in functional programming languages and
regularity is a cardinal design principle (I hope it
is!) then application mustwabys be explicit.
Haskeller: Do you want us to write?

| engt h$(x:xs) =1 + | ength$xs
EWD: Um...
Haskeller: | find the$s wly!
EWD: The$s ae your choice.
Haskeller: (Exasperated) But then what do you
want?
EWD: This is a question on design... Application
must sha but it must not dominateThis calls
for an operator thatven when ubiquitous, will
not overwhelm. For myself, after | realised that
functions and application are being&i sscond-
class treatment in computing science, (and that is
because of the bad habits we inherit from
mathematicians) | ha tarted using a dot for this
purpose. Thusmap. (1+). xs
Haskeller: Does not look very regular to me.
Why is there no dot between 1 and
EWD: Oh that's easy. map. ((+). 1).I In fact for
ary operator * we may define sections by
postulating the following as equal.

X*y

(x9).y
(*y)- X
(*)-x.y

We treat the others as short-forms for the last.
Haskeller: | am somehav very uneasy ...

EWD: Why?

Haskeller: In Haslell we already use the dot for
composition. What do we do then for
composition?

EWD: Hmm ... As | said this is a matter of design
... | do not knw your Haskell very well bt is it
not true that you use indentation to demarcate
blocks, individual elements of blocks and the
like?

Haskeller: (Warily) Yes, and what is wrong with
that?

EWD: O nothing! It is good, very good. A
language that mas clean programming

mandatory is good.| asked because if the
semicolon is free you could use it to denote
composition, you could ven define it in
diagrammatical order thus:

(f;9).x=9.(f.x)
Haskeller: But the semicolon is not free, sarrit
is alloved as an explicit alternat © separate
declarations.
EWD: (Puzzed) But you just
indentation is used for that purpose?
Haskeller: You may use indentation or you may
use braces and semicolons. Its the progransmer’
choice.
EWD: (Laughing) Like dchoosing a hot-dog or a
sandwich at a fast-food restaurant?
Haskeller: What is wrong with allowing the
programmer some choice?
EWD: Well then wly not allov him some more
choice? Lilke asssignments, pointers, gotos...?
Haskeller: Ridicule me if you lile ... Yes lIve got
it! Thereis a serious problem with application as
a first-class operatorlf application is itself an
operator it can itself be sectioneihen we are in
trouble if we listen to youOr are you suggesting
that application be an exception to the rule and
not be allowed in sections? That would be an
ugly wart on the face of Haskell.
EWD: | neve suggested making application
special. Sectioningt gives ome nice results.
Here is one for the left-section:

f
by n-abstraction
=Ax - f.x
left sectioning the dot
=AX - (f.).x
by n-reduction
=(f.)

Haskeller: What does this mean?
EWD: It has a profound significancé.says that
a function is nothing more than what it means to
apply it.
Haskeller: Ok. What about the right sectionl
cannot see what use that may be put to.
EWD: On the contrary it has marpractical uses
Here is one. The functiopam (corverse ofmap)
has the following informal specification

pam. x.[fq, fo, ... f)] = [f. %, fo. X, ... fh. X]
Using the right-sectioned dot it is easily defined
as:

pam. x. fl = map. (. x). fl
It would be much harder to dises this if the
application were not evident in the specification.

said that

Also the first result can be generalised as

f=(f.)=((f.).)=---

Haskeller: pam is nice but the last is horrible.

How do we mplement it?

EWD: Do you hae touble implementing- just
becausx =x+0=x+0+0="---?

Or do you hge touble implementing Hindu-
Arabic numerals just because we can write 3 as
03 or 003 oF - -?

Haskeller: I'll accept if you can ge e a se for
the full-section.

EWD: Do you accept that one of the chief
benefits of A-calculus is that highesrder
relations of profound significance can be
expressed asl-expressions? @ The fact that
functions can be written in curried or tupled
notation can bexpressed in the object notation in
terms of the combinatorsurry anduncurry?
Haskeller: Sure

EWD: How would you express the idea of
application?

Haskeller: apply = Axy —» Xy

EWD: | would write that agpply = AXy - X.y
Haskeller: What's the advantage?

EWD: For one thing it is gry clear that they to
the left of the - is just syntax whereas to the
right we are denoting somethingBetter still
obsene the following proof.

apply
by definition
ZAXY > XY
by definition of full section
=AXY - (L).Xy
by left-associatie cmnvention
=AXY - ((.).X).y
by n-reduction
=AX - ((.)-X)
by n-reduction
=()

Which brings us back to where we started.
Application is denoted by a symbolAnd the
calculus is enough to ave & it.

