Introduction to Programming
Aims and Objectives

To gve students the grounding that makes it possible to approach problems aadhsofv on the
computer.

The aspects emred range across:
— Modelling a gven problem domain appropriately
— Designing a solution

— Implementing the solution in a highvk programming language
Contents

Two paradigms are used as vehicles to carry the ideasxatute practicals for this coursethe functional
and the imperate.

1. The Functional Paradigm

The central issue here is to be able to use the computer as avelgiodd for problem solving.The
paradigm coveyed may be simply expressed as:

Programs ae functions from input to output.

Functions ae defined in terms of expressions of arbitrary type.

Understanding functions requires nothing mdran substitution.

Programs compute byewriting the head of a function to the body until nothing can be further
rewritten.

A modern non-strict functional language with a polymorphic type system is the medium for thitgart.
currently used language is the internationally standardized language, Haskell [].

Important ideas that are to bevered include:
1.1 Standard Constructs
Function and type definition, block structure.

Guarded equations, pattern matching.
Special syntax for lists, comprehension.

1.2 Standard Data Types
Flueng is to be &hieved in the standard data-types: numbers, boolean, charagiks, list.

List programs in an algebraic vein.
Lists in the context of general collectionsets, bags, lists, tuples. (MF?)

1.3 A-calculus

A direct way for denoting functions.

1.4 First-Classness

All values are uniformly treated and conceptualized.
1.5 Higher Order Functions

Use of first-class, higher-order functions to capture large classes of computations in a siinpfnw
understanding of the benefits that accrurodularity flexibility, brevity, degance.

1.6 Laziness

The use of infinite data-structures to separate control from action.
1.7 Typediscipline

Polymorphism: Theuse of generic types to model and capture large classes of data-structures by
factorizing common patterns.

Inference: Thetypes of epressions may be determined by simple examination of the progsm te
Understanding such rules.

User-defined types: User-defined types as
— ameans to model
— ameans to extend the language
— ameans to understand the built-in types in a uniform freorie

Concrete typesTypes are concrete. i.e. values that are read or written by the system correspond directly to
the abstractions that theepresent. Morepecifically unlike astract types which are defined in terms
of admissable operations, concrete types are defindi étly specifying the set of possible values.

1.8 Recursion
Recursie definitions as
— ameans of looping indefinitely
— astructural counterpart to recwsidata-type definitions

— ameans to understand induction in a more general framkehan just for natural numbers
1.9 Operational Semantics

Functional programsxecute by rewriting.
A-calculus as a rewriting system
Reduction, confluence, reasons for preferring normal-order reduction.

1.10 Type Classes
Values are to types as types are to classes. Only elementary ideas.
2. Thelmperative Paradigm

The imperatie paradigm is smoothly introduced as follows:

Worlds TheTimeless Wirld World of Time
Domain Mathematics Programming
Syntax Expressions Statements
Semantics "lues Objects
Explicit DataStructures Contrdbtructure
Think with Input-Output relations State Change
Abstractions| Functions Procedures
Relation Denot@rogramd] O Implement functions

In the following we spell out some of the points ofvhBP tanslates into Imp.PThe examples may be
analogized from say oone would teach assembly language to someone who undestands structured
programming.

2.1 Semantic relations

The central relation is that impesai programmings denotational semantics is FPP’s gperational
semantics is imperag pogramming.
2.2 Operational Thinking

IN FP data-dependencimplicitly determines sequencing whereas in Imp P it is daxgicély.
Advantages and disadvantages of operational thinking.

2.3 Environment

In imperatve pogramming there is a single implicit\éronment— memory In FP tere are multiple
ervironments; which could bexplicit to the point of first-classness (the value of variables bound in
ervironments could be otherdronments). Use of environments to model data abstraction, various object
frameworks, module systems.

2.4 Semi-Explicit Continuation

Explicit in the sense that goto-labels can be dealt with first-classly (as in assembly), but not explicit in the
sense of capturing the entire future of a computatiodynamic &ecution of a code block may be

‘concave'.
2.5 Recursion iteration equivalence

General principles as well as scheme semantics of tail-recursion.
2.6 Typelssues

Monomorphic, polymorphic and latent typing: translating one into another.
2.7 Guile

A variety of ehicles hage keen used for the imperedi paradigm, eg. Pascal, C,vdaTcl. Thecurrent
choice is Scheme in the guile dialect becauseviasgh ll support for the functional and the impevati
paradigm. Irfact Guile has been chosewen C because the single data structure in griteexpressions

is uniersal (aka XML) and thus imperaéi and functional thinking do not quarrel with data-structure
issues.

Orthogonal kinds of abstractions, which are usually considerednadd’, such as functional, higheder
functional, object-oriented, stream-based, dateedrilanguage extensions vigak via macros, via C can

be easily demonstrated. In fact, once guile has been learnt, it is much faster to pick up C in the subsequent
semester.

Note: In addition to being a system programming and general purpose language Guile is also a scripting,
extension and database programming language because it is the flagship language for FSF (The free
software foundation).

3. Bibliography

Bird and Wadler; Introduction to Functional Programming; Prentice Hall

Bird; Algebra of Programs; Prentice Hall

Abelsonand Sussman; Structure and Interpretation of Computer Programs; MIT Press
Friedmanrand Haynes; Scheme and the Art of Programming; MIT Press
ThomasMyers; Equations Models and Programs; Prentice Hall

N Wirth; Algorithms + Data Structures = Programs

ReadeFunctional Programming

Bornat;Programming from First Principles; Prentice Hall

© © N o 0~ wDd P

Halland Donnell; Discrete Maths with a computer; Springer Verlag

-
o

GuileReference Manual; www.gnu.org

