
Introduction to Programming

Aims and Objectives

To giv e students the grounding that makes it possible to approach problems and solve them on the
computer.

The aspects covered range across:

— Modelling a given problem domain appropriately

— Designing a solution

— Implementing the solution in a high-level programming language

Contents

Tw o paradigms are used as vehicles to carry the ideas and execute practicals for this course− the functional
and the imperative.

1. The Functional Paradigm
The central issue here is to be able to use the computer as a high-level tool for problem solving.The
paradigm conveyed may be simply expressed as:

Programs are functions from input to output.
Functions are defined in terms of expressions of arbitrary type.
Understanding functions requires nothing more than substitution.
Programs compute by rewriting the head of a function to the body until nothing can be further
re written.

A modern non-strict functional language with a polymorphic type system is the medium for this part.The
currently used language is the internationally standardized language, Haskell [].

Important ideas that are to be covered include:

1.1 Standard Constructs

Function and type definition, block structure.
Guarded equations, pattern matching.
Special syntax for lists, comprehension.

1.2 Standard Data Types

Fluency is to be achieved in the standard data-types: numbers, boolean, character, tuple, list.
List programs in an algebraic vein.
Lists in the context of general collections− sets, bags, lists, tuples. (MF?)

1.3 λ-calculus

A direct way for denoting functions.

1.4 First-Classness

All values are uniformly treated and conceptualized.

1.5 Higher Order Functions

Use of first-class, higher-order functions to capture large classes of computations in a simple way. An
understanding of the benefits that accrue− modularity, flexibility , brevity, elegance.

1.6 Laziness

The use of infinite data-structures to separate control from action.

1.7 Type discipline

Polymorphism: Theuse of generic types to model and capture large classes of data-structures by
factorizing common patterns.



Inference: Thetypes of expressions may be determined by simple examination of the program text.
Understanding such rules.

User-defined types: User-defined types as

— ameans to model

— ameans to extend the language

— ameans to understand the built-in types in a uniform framework.

Concrete types:Types are concrete. i.e. values that are read or written by the system correspond directly to
the abstractions that they represent. Morespecifically, unlike abstract types which are defined in terms
of admissable operations, concrete types are defined bydirectly specifying the set of possible values.

1.8 Recursion

Recursive definitions as

— ameans of looping indefinitely

— astructural counterpart to recursive data-type definitions

— ameans to understand induction in a more general framework than just for natural numbers

1.9 Operational Semantics

Functional programs execute by rewriting.
λ-calculus as a rewriting system
Reduction, confluence, reasons for preferring normal-order reduction.

1.10 Type Classes

Values are to types as types are to classes. Only elementary ideas.

2. The Imperative Paradigm
The imperative paradigm is smoothly introduced as follows:

Worlds TheTimeless World World of Time

Domain Mathematics Programming
Syntax Expressions Statements
Semantics Values Objects
Explicit DataStructures ControlStructure
Think with Input-Output relations State Change
Abstractions Functions Procedures

Relation Denoteprograms⇒ ⇐ Implement functions

In the following we spell out some of the points of how FP translates into Imp P. The examples may be
analogized from say how one would teach assembly language to someone who undestands structured
programming.

2.1 Semantic relations

The central relation is that imperative programming’s denotational semantics is FP, FP’s operational
semantics is imperative programming.

2.2 Operational Thinking

IN FP data-dependency implicitly determines sequencing whereas in Imp P it is done explicitly.
Advantages and disadvantages of operational thinking.

2.3 Environment

In imperative programming there is a single implicit environment − memory. In FP there are multiple
environments; which could be explicit to the point of first-classness (the value of variables bound in
environments could be other environments). Use of environments to model data abstraction, various object
frameworks, module systems.

2.4 Semi-Explicit Continuation

Explicit in the sense that goto-labels can be dealt with first-classly (as in assembly), but not explicit in the
sense of capturing the entire future of a computation− dynamic execution of a code block may be



’concave’.

2.5 Recursion iteration equivalence

General principles as well as scheme semantics of tail-recursion.

2.6 Type Issues

Monomorphic, polymorphic and latent typing: translating one into another.

2.7 Guile

A variety of vehicles have been used for the imperative paradigm, eg. Pascal, C, Java, Tcl. The current
choice is Scheme in the guile dialect because it gives a full support for the functional and the imperative
paradigm. Infact Guile has been chosen over C because the single data structure in guile− s-expressions−
is universal (aka XML) and thus imperative and functional thinking do not quarrel with data-structure
issues.

Orthogonal kinds of abstractions, which are usually considered ‘advanced’, such as functional, higher-order
functional, object-oriented, stream-based, data-driven, language extensions via eval, via macros, via C can
be easily demonstrated. In fact, once guile has been learnt, it is much faster to pick up C in the subsequent
semester.

Note: In addition to being a system programming and general purpose language Guile is also a scripting,
extension and database programming language because it is the flagship language for FSF (The free
software foundation).

3. Bibliography
1. Birdand Wadler; Introduction to Functional Programming; Prentice Hall

2. Bird;Algebra of Programs; Prentice Hall

3. Abelsonand Sussman; Structure and Interpretation of Computer Programs; MIT Press

4. Friedmannand Haynes; Scheme and the Art of Programming; MIT Press

5. ThomasMyers; Equations Models and Programs; Prentice Hall

6. NWirth; Algorithms + Data Structures = Programs

7. Reade;Functional Programming

8. Bornat;Programming from First Principles; Prentice Hall

9. Hall and Donnell; Discrete Maths with a computer; Springer Verlag

10. GuileReference Manual; www.gnu.org


