Notes on Notation

1. Introduction

This note is about twiddle-dee and twiddle-dum — at least that is what a self-respecting mathematician
would say But we are not mathematicians, we are computer scientists or should we saycoatpeter
programmers?

Any discussion on notation auld naturally address issuesdikadability expressivity conciseness, etc..

We loweve give paramount importance to those attempts that close the gap between mathematics and
programming. Thisrises from the belief that mathematics and programming are not dispanatescti

and members of both parties would immensely benefit from having a common core notation.

In fact, there is a trend in computer science today of searching for simple, general mathematical formalisms
unifying diverse branches of mathematics and computer science. Functional programming languages
(FPLs) represent one of the best bets that we fua effecting this integrating becausetls# in a centrist

position between mathematics and CS. This kind of goal is clearly long-term and more educational and
cultural than narrowly scientific. Ina€t the (original@) Haskell report makes a clear commitment to a
language that is as much for educational purposes as it is for software engineering.

Thirteen years of teaching programming with FPLs ekicles- Scheme(88), Miranda TM(89), and
gofer(92) has gen me data for saying that some changes need to be made to gofer tovemntpeo
bandwidth of programming educatiorihe fact that a gofer (or Haskell or ML or Scheme or Clean)
programmer has an enormous aatage ver one trained with Pascal or C or C++ or some other arcane OO
language is not enoughe reed to judge on internal considerations also whether we could do, better
whether we are not being unnecessarily tripped up by small things.

Some years ago | made some small changes to gefard®this end. In this note | discuss the issues of
four syntactic aspects of goferall of which are identical to Hask — and try to explain the reasons for my
changes. Théour syntaxes are: function application, function composition, the ‘cons’ vs the ‘has type’
operators and concrete types.

2.
ML uses "’ for ‘has type’ and “::’ for ‘cons’.Haslell uses the opposite caamtion presumably because

cons is far more frequent in functional programs than declaratioosnsider the Haskl choice to be
misguided for the following reasons:

The single colon is ceentionally used for ‘has type’ by mathematiciang, ‘é: R— R. Now when a
convention is unhealty it should certainly be brokenub to flout it needlessly seems to be uncalled for
The Haskll violation of the mathematical ceention is gratuitous.Even if programs contain e type
declarations, discussiorabout programs — ranging from machines that compile to humans the¢ pro
theorems — contain a lot more.

The strongest argument against the flipped colon and the double-colon can be seen by analogy with similar
misguided choices in C.

In C, && is logical-and whereas & is bitwise-an®resumablythis was done because in the earliest days
when C was used to write Unix, it wagpected that uses of bitwise operations would predominate.
Clearly this has not been true thereafter and the choice, in hindsight, is a mistake.

Even worse is the case of = and == inA&gain, one may presume that the choice of theseoperators is
based on statistical considerations: assignment occurs far more frequently than. ed4ualiygain, in
hindsight the choice is clearly a mistakNotonly does the use of = for assignment confuse studdhtsy
actually think it is equality- but even experienced software delopers sometimes slip up: théorget the
second = in == in a condition likef (x = 1) { andthen ...

Languages should be designed on primarily psychological considerations and not on blind statistics.

3. Function Application

Euler is the one who introduced the modern notation for function applicatibfx). Most of todays
functional languages such as Haskell and ML tequire the parenthesis, i.€.x is the norm though of
course f(x) is dlowed, but then so isf(x. In short, whereas Euler (and following him, modern
mathematicians), denote function application with parenthesis, FPLs denote it by nothing i.e. juxtaposition.
Dijkstra recognising that application operates on a function and an argument to produce pésiily, e
shows it as an operatoHis notation isf . x.

Euler's motation is ambiguous about the structure Bf(0)(q). Isit ((f)(p))(a) or (f)((p)(q))? Hence
disambiguating parenthesis are required. FPLs and Dijkstra posit application to be left-aesmctatit
currying becomes natural.

3.1 Criticism of the Eulerian Notation

1. Ofall the notationd (x) is the longest.

2. Experiencewith Lisp indicates thatxessve parenthesis causes problems for human parsers — if
not for automatic ones. If the parenthesid {x) seem to be innocuous, look at the definitiorBof
(function composition ini calculus) in the Eulerian form:

((B(E)(@)(X) = f(a(x))
and then in the modern functional form:
Bfgx=f(gx)

We e here that the Eulerian notation is unsuitable for conducting higher-order business and we get
a due why mathematicians typically find higher-order concepts difficult — the problem is with their
notation not the concepts.[Whorf], [Wittgenstein]

3. This use of parenthesis to denote function application is \mmloading of the parentheses
‘operator’. If we also allav elision of operators to indicate multiplication as is common in
traditional mathematics- then x(y) is anbiguous because it could be either multiplication or
application.

4. Thisbrings us to the main reason to questidix). Eulerrarely needed anything more comple
than a literal ‘f or ‘J’ or ‘sin’ etc in the function position although he often needed comple
expressions in the argument position. As soon as we start having more xerpplkessions in the
function position such asf ¢g)(x), we see that we need parenthess.in the general case we are
likely to find ourselves writingf()(x). Insteadwe may as well drop all parenthesis other than the
ones used for grouping and we obtain the modern functional language alefnati

3.2 Criticism of the functional language alternatve

In atypewiter font the difference between the 2-character identifierand the 2 juxtaposed
identifiersf x is obvious. Havever, where between

fx andfx andf x andf xandf x
we stop haing a single identifier and begin toveatwo, is not clear Mathematicians typicallyvaid the
problem by using one-character names — a solution ino@ideito us programmers.

A more serious problem is that it blocks mathematical unification. The FP akterambtunts to elision of
a ymbol. Elidinga ymbol means writing less. But in different notations the elision denotésetit
things. For examplex y could mean:

1. Multiplication(in school algebra)

2. Applicationof an arbitrary operation (in Group Theory)

3. Applicationof the multiplicatve goeration (in Ring Theory)

4. Listconcatenation (in awk)

5. Applyfunction x to argument y (in modern functional languages)

Perhaps sometimes we need to sit back and look at all feeediftheories we use and ask ourselves: Are
we paying too high a global price at the altar of internaveaience?

3.3 TheBenefits of the explicit Dot

Below | discuss some of the points of wie- in bottom-up order of significance from which the
application dot (henceforth the Dijkstra-dot) is desirable.

1. Typing and Typesetting The amount of typing required fdr x and f.x is identical and so is the space
taken, and both are better thdiix) on both counts. Asdr as readability is concerned the FP alteveati
must rate lower than Dijksts'because space gets a context sessitreaning, or equilently, the
semantics of space iv@loaded- sometimes denoting nothing other than layout and sometimes denoting
the very significant operation of application.

2. Pedagogy The abee poblem is not merely academic but pedagogical as well. Students find it hard to
understand that the space betwekerand x in f x is not nothing but denotes something of great
importance. Thigproblem is compounded by the fact that in most other plagesyerounding operators,

=, also around [] etc) the space is merelyxarfee separator and actually denotes nothing.

| havefound that students see €]) as he tuple @, q) with the comma missing! Such confusioowd not
be possible with the Dijkstra dot.

3. First Classness Functional programming is characterized by all values being first-class. In aites w
a function is no more or less special than say aménteSo just as integers can be combined using >, *
etc., functions can be combined using &',étc.. Any irregularity of notational corentions would mean a
compromise of first-classness.

4. Category Theory There has been an increasing interest in applyingagtéheory to computer science.
An important category for computer scientists is the Cartesian ClosegoGateone in which ifa andb
are two ‘objects’ (sets) then so & - b and it comes equipped with apply operator Being able to write
f. x instead ofapply(f, X) should male Cartesian Closed Categories easier to handle.

5. Mathematical Progress The fact that function application could be viewed as an operator itself, is an
important but very recent mathematical disgg. The sooner it is incorporated into the mathematical
mainstream, the better.

3.4 Implementation Considerations

It may at first sight appear that my suggestion is one that would complicate the Haskell $higas.not
true. Thelocal modifications Ve made to gofer that incorporate the Dijkstra-dotéha educed grammar
In the original gofer we need the productions

appExp — appExp atomic | atomic

to describe the application syntadow we don’t needappExp at all because syntactically the dot is just an
infix operator lilke any ather.

3.5 Similar Ideas Elsewhere

Others with dierse requirements ke sen the need for an application operaton the theoretical side,
Barendrgt uses a strange igel-like dgn. Peton-Jones uses @ to denote application nodes in FP
graphs. Joosteasserts that mgnproblems in teaching first year students is connected with priority
associatiity rules and the placing of parenthesis, especially with thésibiie’ function application
operator.

The abeoe $ows that an application operator is found necessary by peaple.

One should concede here that Lisp and its descendeat&lileme with itsApply function has been
systematic and consistent for 40 years.

3.6 Apossible Haskell objection

Haslell uses a dot for composition thereby precluding Dijksttaage. Inan ASCII context where is
unavailable, | feel that the semicolon is quite appropriate for composition (see next section) thereby freeing
the dot for applicationA few Haslellers may object that the semicolon itself has a usage ireHaskis
awailable as an alternate separator for those who do not use IAybyitnot provide assignment, pointers

and registers for these antiquated users?

4. Function Composition

Generally function composition is defined as follows:
(gof).x=0.(f.x)
We instead use ‘;’ and define it as follows:
(f;9).x=9.(f.x)
Although our notation may seem more wdated, we prefer it because firstly our definition has the
obvious intuition of “and thef’” More significantly the type is
(@-b)-(b-c)-(a-c
rather than
(b-c)-(a-hb)-(a-c
The first is obviously more intuite than the second.

It is curious that mantexts on category theory choose the old order rather than the one recommended here
even though mag accept that this one is preferable. This emkt necessary to read all diagrams
backwards. Thisis sad because the manifesto of category theory is to absti@cfram elements of sets

to sets themseds. ‘et the category theorists burden themselves with a notation whose only benefit lies in
the origin which the seek to forget.

Comment: It was pointed out to me that if; g is preferable togof on essentially ‘operational’ or
‘diagrammatic’ considerations, then similaflyx should be replaced witk. f (read as ‘gie the \aluex to

.

We dn’'t make this switch-@er because we are lazy!

5. Concrete Types

Starting with ML, concrete types V@ been providing a peerful framevork for defining user-defined data
types, a fram@ork that subsumes records, unions, enumerations, reeuypies and generic types in one
elegant setting.

However the syntax of the concrete type declaration in ldihsk unwholesome, resulting in painful
confusions for students and unnecessary problems for tea¢tshiguld mention that this is being written
after 12 years of using Bird & Wadler notation, a notation that is almost identical to Haskell in this aspect.

To better understand the problem let us try to simulate the psychology of the programpagticular the
programmer doing functional programming. Theyldfference between the programmer doing functional
programming and one following the impevatiac OO gdyles is that whereas the latter thinks in terms of
state, pointers, assignments, objects etc, the former thinks mostly with mathematiczd. vin
philosophical terms the imperai a object-oriented programmer is an empiricist, the functional
programmer by comparison has a platonic outlook. When designing a type he starts of with the intention of
describing a certaiget of values. This then refines to the fact thatfdient elements of the type may be
differently constituted oconstructed whence we come to differeobnstructors with their respectie types.

Ideally, therefore the language should allthe programmer to specifyhat these constructors are whose
closure is the type being defineHaslell instead asks the programmer to spehiw these constructors
look when used. In short it emphasisgstax at the cost ofemantics.

To ducidate the problem let me present my suggested altegnatiation for concrete types. This will
help us to more easily pinpoint the problems with the Haskell syntax.

5.1 TheAlternati ve Notation

The Haskell declaration:
dataTreea= Lfa | Br a(Treea) (Treea)
becomes
ctype Tree.a where
Lf:a - Treea
Br:a - Treea —» Treea - Treea

5.2 Problems

1. Non-Uniform Syntax: The class, instance anddata declarations in Haskell are a related triowaer
the class andinstance syntax is uniform but thdata syntax is not. Thetype syntax has been chosen to be
consistent with that dhstance andclass.

2. Return Type not Evident: All the arguments that a constructor takes are presa&htméhe constructor
However the return type is not immediately evident but must be found from the declaration Tead.
contributes its own share of confusion.

3. Terminology not Suggestive: | guess that the history behind theyword data is that the HasHI
committee took the ard datatype from ML and then shortened it. Unfortunately therdvdata does not
suggest the notion of type.haveexperienced this once when | asked students to distinguish between data
and type in Hasil. A number of students, completely digaaling the Haskell which tlyeall knew, gave
philosophical answers distinguishing values (data) from types.

4. Multiple notions of Application: This is perhaps the single biggest problem, most of the others being
corollary to it. In the example albe there is an application betwed&ree anda and another application
betweerLf anda. In addition, there are the 2 standard applications, &$ 20— a smple value-generating
constructor use, and in

f(Lfx) = ..
ie a pattern usage. When constructors introdoge new applications in addition to the usuik kind, it
should be no surprise that students find it heavy goiftgmake it dear let me tabulate the 6 kinds of
applications that a Haskell programmer must consciously distinguish.

function call fx
constructor as constructeran rhs value| Lf2
constructor as destructeran lhs pattern| Lfx

type constructor Treea
class constructor Ega
constructor definitior in adata rhs Lfa

Now it should be obious that imposing so mgrsubtly different applications, is heavy going on the
hapless bginner One could perhaps argue that the first Svabme applications of some sorBut for the
last there is no suchkxeuse. Wl must we hae these kind of arcane confusions in Haskell wherein clarity
and elgance are reered? Isit because Haskell is aapplicative language that the Haskell programmer
must face a barrage of applications?

5. Lessons from C not learnt: In C, a variable declaration is mnemonic ie the declaration lookghé
usage and C is notorious for its difficult declaration syntx.he declaration for an array of pointers to
functions taking char and returning intiisit (*a[]) (char)

The Haskll data follows the same design principle as—-Ghe declaration mirrors the usage. This is
unfortunate because although the type world is totally different from the value world, the language
introduces needless confusions in thigare.

It should be noted here that although the problem of sy diiffierent types of applications is significantly
alleviated by making the applications explicit with the Dijkstra-dot, the Scheme akerrmtiogically
simpler and more consistentvegything that exists in the language can be combined uniforyes
simply do not exist.

6. Pseudo Precedence Clashes: In the example gen above, it is seen thatTree a needs to be
parenthesized in the Haskell origindtherwise we would get a sub-expression of the fdma(Tree).
Clearly this is a manifestation of the abqroblem: two dashing kinds of application. This problem is not
there with thectype formulation.

7. Confusion with Grammars: A typical student being introduced to CS is likely to kpased to conte
free grammars either in this course or in some other concurrent colmgewe, as computer scientists,
can see that

Loosely: a data declaration comes close to a grammar though it is not quite that.
Precisely: if we replace each type expression in a data declaration by a corresponding non-terminal for the
the grammar of expressions of that type, we get a grammar for the data type being defined.

Now as a eacherl can give the precise statement aleoand frighten the hapless student, or | caredine
loose statement and confuse him. Which shall | choose?

6. Conclusion

| do not like these choicesThey are not fundamental or genuine dilemmas; rathey the a consequence
of Haslell's design. Ifl can change Hagl — if necessary locally as | tia cone for gofer- then | would
certainly do that. Standardization must be sacrificed at the altar of clarity and simplicity.

7. Problems Remaining

1. Thetype constructor for lists ‘[]' used asnf] while seemingly suggest is unduly confusing by
mixing up the singleton list value containing a} \vith the generic list of a, als@]. | would like
to go back to the ML-likd.ist.a which should be easy enough to do.

2. Thetuple constructor has the same problem but is a tougher nut to crack.

3. lwould hare preferred to use theelword type instead ofctype but since type is already in use for
defining type synonyms évot disturbed it.

4. Theemacs interface is not quite up to the mark

Whatlve done to gofer should probably be redone for hugs. Honestly thoughe Idmsons to
prefer to gofer to Hagltl: My preference, both personally and as a teaéhdor a calculator of
Turing-complete paver - like APL — and not a softare engineering behemoth in the Ada, C++,
Java traditions.

8. Appendix

The changes that distinguish pugofer (Punevédsity gofer) from standard gofer are as falfo Notethat
one can alays switch syntaxes on the fly by using the optiogs+Sor:s -S

1. Applicationmust be explicitly shown with a dot (Dijkstra philosophy)

2. Thisapplies to other non first class applications as well viz. type construtieesa() and class
constructorskqg.a)

3. bind is reversed and called with a double dot (so that the generalization of simple application to
monadic bind is apparent)

4. syntaxof data is changed t@type — concrete type- so that the syntas (is it syntices?) aflass,
instance andctype are uniform.

5. :and : are flipped

To dlow for the abwe changes the following changes are also there
6. enumFronetc use triple dot instead of double dot

7. compositions named ; and is in left-to right order

And to male dlowances for the abh@

8. layoutis the only way to denote nesting. Use of {yeg the error
Layout imperative in functional programming

9. Bibliography
HenkBarendregt; Lambda Calculus; North Holland

SimonL Peyton-Jones; The Implementation of Functional Languages; Prentice Hall 1986

RBird and P Wadler; Introduction to Functional Languages; Prentice Hall

E A

SJoosten, Klaas van den BeiGerrit van der Ho@n; Teaching Functional Programming to First
Year Students; Journal of Functional Programming 3(1), Jan 1993

5. L.Meertens

© © N o

10.
11.

A.J.M.van Gasteren; On the Shape of Mathematical Arguments; Springer Verlag

Haslell Report

E.W Dijkstra and Carel Scholten; Predicate Calculus and Program Semantics; Springer Verlag 1990
BrianKernighan and Dennis Ritchie; The C Programming Language Prentice Hall

Benjamin_ee Whorf; Language Thought and Reality;

L. Wittgenstein; Tractacus Logico Philosophicus;

