
Notes on Notation

1. Intr oduction
This note is about twiddle-dee and twiddle-dum — at least that is what a self-respecting mathematician
would say. But we are not mathematicians, we are computer scientists or should we say rather, computer
programmers?

Any discussion on notation would naturally address issues like readability, expressivity, conciseness, etc..
We howev er giv e paramount importance to those attempts that close the gap between mathematics and
programming. Thisarises from the belief that mathematics and programming are not disparate activities
and members of both parties would immensely benefit from having a common core notation.

In fact, there is a trend in computer science today of searching for simple, general mathematical formalisms
unifying diverse branches of mathematics and computer science. Functional programming languages
(FPLs) represent one of the best bets that we have for effecting this integrating because they sit in a centrist
position between mathematics and CS. This kind of goal is clearly long-term and more educational and
cultural than narrowly scientific. In fact the (original@) Haskell report makes a clear commitment to a
language that is as much for educational purposes as it is for software engineering.

Thirteen years of teaching programming with FPLs as vehicles − Scheme(88), Miranda TM(89), and
gofer(92) has given me data for saying that some changes need to be made to gofer to improve the
bandwidth of programming education.The fact that a gofer (or Haskell or ML or Scheme or Clean)
programmer has an enormous advantage over one trained with Pascal or C or C++ or some other arcane OO
language is not enough.We need to judge on internal considerations also whether we could do better,
whether we are not being unnecessarily tripped up by small things.

Some years ago I made some small changes to gofer towards this end. In this note I discuss the issues of
four syntactic aspects of gofer− all of which are identical to Haskell − and try to explain the reasons for my
changes. Thefour syntaxes are: function application, function composition, the ‘cons’ vs the ‘has type’
operators and concrete types.

2. ‘:’ : ‘ ::’
ML uses ‘:’ for ‘has type’ and ‘::’ for ‘cons’.Haskell uses the opposite convention presumably because
cons is far more frequent in functional programs than declarations.I consider the Haskell choice to be
misguided for the following reasons:

The single colon is conventionally used for ‘has type’ by mathematicians, eg ‘ f : R→R’. Now when a
convention is unhealthy it should certainly be broken but to flout it needlessly seems to be uncalled for.
The Haskell violation of the mathematical convention is gratuitous.Even if programs contain few type
declarations, discussionsabout programs — ranging from machines that compile to humans that prove
theorems — contain a lot more.

The strongest argument against the flipped colon and the double-colon can be seen by analogy with similar
misguided choices in C.

In C, && is logical-and whereas & is bitwise-and.Presumably, this was done because in the earliest days
when C was used to write Unix, it was expected that uses of bitwise operations would predominate.
Clearly this has not been true thereafter and the choice, in hindsight, is a mistake.

Even worse is the case of = and == in C.Again, one may presume that the choice of these two operators is
based on statistical considerations: assignment occurs far more frequently than equality. And again, in
hindsight the choice is clearly a mistake. Notonly does the use of = for assignment confuse students− they
actually think it is equality− but even experienced software developers sometimes slip up: they forget the
second = in == in a condition likeif (x = 1) { and then ...

Languages should be designed on primarily psychological considerations and not on blind statistics.

3. FunctionApplication
Euler is the one who introduced the modern notation for function application− f (x). Most of today’s
functional languages such as Haskell and ML don’t require the parenthesis, i.e.f x is the norm though of
course f (x) is allowed, but then so is (f)x. In short, whereas Euler (and following him, modern
mathematicians), denote function application with parenthesis, FPLs denote it by nothing i.e. juxtaposition.
Dijkstra recognising that application operates on a function and an argument to produce a result, explicitly
shows it as an operator. His notation isf .x.

Euler’s notation is ambiguous about the structure of (f)(p)(q). Is it ((f)(p))(q) or (f)((p)(q))? Hence
disambiguating parenthesis are required. FPLs and Dijkstra posit application to be left-associative so that
currying becomes natural.

3.1 Criticism of the Eulerian Notation

1. Ofall the notationsf (x) is the longest.

2. Experiencewith Lisp indicates that excessive parenthesis causes problems for human parsers — if
not for automatic ones. If the parenthesis inf (x) seem to be innocuous, look at the definition ofB
(function composition inλ calculus) in the Eulerian form:

((B(f))(g))(x) = f (g(x))

and then in the modern functional form:

B f g x = f (g x)

We see here that the Eulerian notation is unsuitable for conducting higher-order business and we get
a clue why mathematicians typically find higher-order concepts difficult — the problem is with their
notation not the concepts.[Whorf], [Wittgenstein]

3. This use of parenthesis to denote function application is an overloading of the parentheses
‘operator’. If we also allow elision of operators to indicate multiplication− as is common in
traditional mathematics− then x(y) is ambiguous because it could be either multiplication or
application.

4. This brings us to the main reason to questionf (x). Euler rarely needed anything more complex
than a literal ‘f’ or ‘ J’ or ‘sin’ etc in the function position although he often needed complex
expressions in the argument position. As soon as we start having more complex expressions in the
function position such as (f og)(x), we see that we need parenthesis.So in the general case we are
likely to find ourselves writing (f)(x). Insteadwe may as well drop all parenthesis other than the
ones used for grouping and we obtain the modern functional language alternative f x.

3.2 Criticism of the functional language alternative

In a typewriter font the difference between the 2-character identifierfx and the 2 juxtaposed
identifiersf x is obvious. However, where between

fx andf x andf x andf x andf x
we stop having a single identifier and begin to have two, is not clear. Mathematicians typically avoid the
problem by using one-character names — a solution inconceivable to us programmers.

A more serious problem is that it blocks mathematical unification. The FP alternative amounts to elision of
a symbol. Eliding a symbol means writing less. But in different notations the elision denotes different
things. For examplex y could mean:

1. Multiplication(in school algebra)

2. Applicationof an arbitrary operation (in Group Theory)

3. Applicationof the multiplicative operation (in Ring Theory)

4. List concatenation (in awk)

5. Apply function x to argument y (in modern functional languages)

Perhaps sometimes we need to sit back and look at all the different theories we use and ask ourselves: Are
we paying too high a global price at the altar of internal convenience?

3.3 TheBenefits of the explicit Dot

Below I discuss some of the points of view − in bottom-up order of significance− from which the
application dot (henceforth the Dijkstra-dot) is desirable.

1. Typing and Typesetting The amount of typing required forf x and f .x is identical and so is the space
taken, and both are better thanf (x) on both counts. As far as readability is concerned the FP alternative
must rate lower than Dijkstra’s because space gets a context sensitive meaning, or equivalently, the
semantics of space is overloaded− sometimes denoting nothing other than layout and sometimes denoting
the very significant operation of application.

2. Pedagogy The above problem is not merely academic but pedagogical as well. Students find it hard to
understand that the space betweenf and x in f x is not nothing but denotes something of great
importance. Thisproblem is compounded by the fact that in most other places (eg. surrounding operators,
=, also around [] etc) the space is merely a lexeme separator and actually denotes nothing.

I hav efound that students see (p q) as the tuple (p, q) with the comma missing! Such confusion would not
be possible with the Dijkstra dot.

3. First Classness Functional programming is characterized by all values being first-class. In other words
a function is no more or less special than say an integer. So just as integers can be combined using ‘+’, ‘×’
etc., functions can be combined using ‘.’, ‘o’ etc.. Any irregularity of notational conventions would mean a
compromise of first-classness.

4. Category Theory There has been an increasing interest in applying category theory to computer science.
An important category for computer scientists is the Cartesian Closed Category − one in which ifa andb
are two ‘objects’ (sets) then so isa → b and it comes equipped with anapply operator. Being able to write
f . x instead ofapply(f , x) should make Cartesian Closed Categories easier to handle.

5. Mathematical Progress The fact that function application could be viewed as an operator itself, is an
important but very recent mathematical discovery. The sooner it is incorporated into the mathematical
mainstream, the better.

3.4 ImplementationConsiderations

It may at first sight appear that my suggestion is one that would complicate the Haskell syntax.This is not
true. Thelocal modifications I’ve made to gofer that incorporate the Dijkstra-dot have a reduced grammar.
In the original gofer we need the productions

appExp → appExp atomic atomic

to describe the application syntax.Now we don’t needappExp at all because syntactically the dot is just an
infix operator like any other.

3.5 Similar Ideas Elsewhere

Others with diverse requirements have seen the need for an application operator. On the theoretical side,
Barendregt uses a strange integral-like sign. Peyton-Jones uses @ to denote application nodes in FP
graphs. Joostenasserts that many problems in teaching first year students is connected with priority,
associativity rules and the placing of parenthesis, especially with the ‘invisible’ function application
operator.

The above shows that an application operator is found necessary by many people.

One should concede here that Lisp and its descendents like Scheme with itsApply function has been
systematic and consistent for 40 years.

3.6 Apossible Haskell objection

Haskell uses a dot for composition thereby precluding Dijkstra’s usage. Inan ASCII context whereo is
unavailable, I feel that the semicolon is quite appropriate for composition (see next section) thereby freeing
the dot for application.A few Haskellers may object that the semicolon itself has a usage in Haskell − it is
available as an alternate separator for those who do not use layout.Why not provide assignment, pointers
and registers for these antiquated users?

4. FunctionComposition
Generally function composition is defined as follows:

(go f).x = g.(f .x)
We instead use ‘;’ and define it as follows:

(f ; g).x = g.(f .x)
Although our notation may seem more convoluted, we prefer it because firstly our definition has the
obvious intuition of ‘‘and then’’. More significantly, the type is

(a → b) → (b → c) → (a → c)
rather than

(b → c) → (a → b) → (a → c)
The first is obviously more intuitive than the second.

It is curious that many texts on category theory choose the old order rather than the one recommended here
ev en though many accept that this one is preferable. This makes it necessary to read all diagrams
backwards. Thisis sad because the manifesto of category theory is to abstract away from elements of sets
to sets themselves. Yet the category theorists burden themselves with a notation whose only benefit lies in
the origin which they seek to forget.

Comment: It was pointed out to me that iff ; g is preferable togo f on essentially ‘operational’ or
‘diagrammatic’ considerations, then similarlyf .x should be replaced withx. f (read as ‘give the valuex to
f ’).

We don’t make this switch-over because we are lazy!

5. Concrete Types
Starting with ML, concrete types have been providing a powerful framework for defining user-defined data
types, a framework that subsumes records, unions, enumerations, recursive types and generic types in one
elegant setting.

However the syntax of the concrete type declaration in Haskell is unwholesome, resulting in painful
confusions for students and unnecessary problems for teachers.I should mention that this is being written
after 12 years of using Bird & Wadler notation, a notation that is almost identical to Haskell in this aspect.

To better understand the problem let us try to simulate the psychology of the programmer, in particular the
programmer doing functional programming. The key difference between the programmer doing functional
programming and one following the imperative or OO styles is that whereas the latter thinks in terms of
state, pointers, assignments, objects etc, the former thinks mostly with mathematical values. In
philosophical terms the imperative or object-oriented programmer is an empiricist, the functional
programmer by comparison has a platonic outlook. When designing a type he starts of with the intention of
describing a certainset of values. This then refines to the fact that different elements of the type may be
differently constituted orconstructed whence we come to differentconstructors with their respective types.

Ideally, therefore the language should allow the programmer to specifywhat these constructors are whose
closure is the type being defined.Haskell instead asks the programmer to specifyhow these constructors
look when used. In short it emphasisessyntax at the cost ofsemantics.

To elucidate the problem let me present my suggested alternative notation for concrete types. This will
help us to more easily pinpoint the problems with the Haskell syntax.

5.1 TheAlternati ve Notation

The Haskell declaration:
data Tr ee a = Lf a Br a (Tree a) (Tr ee a)

becomes
ctype Tr ee.a where

Lf : a → Tr ee.a
Br : a → Tr ee.a → Tr ee.a → Tr ee.a

5.2 Problems

1. Non-Uniform Syntax: The class, instance anddata declarations in Haskell are a related trio. However
theclass andinstance syntax is uniform but thedata syntax is not. Thectype syntax has been chosen to be
consistent with that ofinstance andclass.

2. Return Type not Evident: All the arguments that a constructor takes are present next to the constructor.
However the return type is not immediately evident but must be found from the declaration head.This
contributes its own share of confusion.

3. Terminology not Suggestive: I guess that the history behind the keyword data is that the Haskell
committee took the word datatype from ML and then shortened it. Unfortunately the word data does not
suggest the notion of type.I hav eexperienced this once when I asked students to distinguish between data
and type in Haskell. A number of students, completely disregarding the Haskell which they all knew, gav e
philosophical answers distinguishing values (data) from types.

4. Multiple notions of Application: This is perhaps the single biggest problem, most of the others being
corollary to it. In the example above, there is an application betweenTr ee anda and another application
betweenLf anda. In addition, there are the 2 standard applications, as inLf 2 − a simple value-generating
constructor use, and in

f (Lf x) = ...
ie a pattern usage. When constructors introducefour new applications in addition to the usualf x kind, it
should be no surprise that students find it heavy going.To make it clear let me tabulate the 6 kinds of
applications that a Haskell programmer must consciously distinguish.

function call f x
constructor as constructor− an rhs value Lf 2
constructor as destructor− an lhs pattern Lf x
type constructor Tr ee a
class constructor Eq a
constructor definition− in adata rhs Lf a

Now it should be obvious that imposing so many subtly different applications, is heavy going on the
hapless beginner. One could perhaps argue that the first 5 above are applications of some sort.But for the
last there is no such excuse. Why must we have these kind of arcane confusions in Haskell wherein clarity
and elegance are revered? Isit because Haskell is anapplicative language that the Haskell programmer
must face a barrage of applications?

5. Lessons from C not learnt: In C, a variable declaration is mnemonic ie the declaration looks like the
usage and C is notorious for its difficult declaration syntax.eg the declaration for an array of pointers to
functions taking char and returning int is:int (*a[])(char)

The Haskell data follows the same design principle as C− the declaration mirrors the usage. This is
unfortunate because although the type world is totally different from the value world, the language
introduces needless confusions in this regard.

It should be noted here that although the problem of so many different types of applications is significantly
alleviated by making the applications explicit with the Dijkstra-dot, the Scheme alternative is logically
simpler and more consistent: everything that exists in the language can be combined uniformly, types
simply do not exist.

6. Pseudo Precedence Clashes: In the example given above, it is seen thatTr ee a needs to be
parenthesized in the Haskell original.Otherwise we would get a sub-expression of the form (Br a Tree).
Clearly this is a manifestation of the above problem: two clashing kinds of application. This problem is not
there with thectype formulation.

7. Confusion with Grammars: A typical student being introduced to CS is likely to be exposed to context
free grammars either in this course or in some other concurrent course.Now we, as computer scientists,
can see that

Loosely: a data declaration comes close to a grammar though it is not quite that.

Precisely: if we replace each type expression in a data declaration by a corresponding non-terminal for the
the grammar of expressions of that type, we get a grammar for the data type being defined.

Now as a teacher, I can give the precise statement above and frighten the hapless student, or I can give the
loose statement and confuse him. Which shall I choose?

6. Conclusion
I do not like these choices.They are not fundamental or genuine dilemmas; rather they are a consequence
of Haskell’s design. IfI can change Haskell − if necessary locally as I have done for gofer− then I would
certainly do that. Standardization must be sacrificed at the altar of clarity and simplicity.

7. Problems Remaining

1. Thetype constructor for lists ‘[]’ used as [Int] while seemingly suggestive is unduly confusing by
mixing up the singleton list value containing a: [a] with the generic list of a, also [a]. I would like
to go back to the ML-likeList.a which should be easy enough to do.

2. Thetuple constructor has the same problem but is a tougher nut to crack.

3. I would have preferred to use the keyword type instead ofctype but since type is already in use for
defining type synonyms Ive not disturbed it.

4. Theemacs interface is not quite up to the mark

5. WhatIve done to gofer should probably be redone for hugs. Honestly though, I have reasons to
prefer to gofer to Haskell: My preference, both personally and as a teacher, is for a calculator of
Turing-complete power − like APL − and not a software engineering behemoth in the Ada, C++,
Java traditions.

8. Appendix
The changes that distinguish pugofer (Pune University gofer) from standard gofer are as follows. Notethat
one can always switch syntaxes on the fly by using the options:s +S or :s -S

1. Applicationmust be explicitly shown with a dot (Dijkstra philosophy)

2. Thisapplies to other non first class applications as well viz. type constructors (Tr ee.a) and class
constructors (Eq.a)

3. bind is reversed and called with a double dot (so that the generalization of simple application to
monadic bind is apparent)

4. syntaxof data is changed toctype − concrete type− so that the syntaxes (is it syntices?) ofclass,
instance andctype are uniform.

5. : and :: are flipped

To allow for the above changes the following changes are also there

6. enumFrometc use triple dot instead of double dot

7. compositionis named ; and is in left-to right order

And to make allowances for the above

8. layoutis the only way to denote nesting. Use of {} gives the error
Layout imperative in functional programming

9. Bibliography

1. HenkBarendregt; Lambda Calculus; North Holland

2. SimonL Peyton-Jones; The Implementation of Functional Languages; Prentice Hall 1986

3. RBird and P Wadler; Introduction to Functional Languages; Prentice Hall

4. SJoosten, Klaas van den Berg, Gerrit van der Hoeven; Teaching Functional Programming to First
Year Students; Journal of Functional Programming 3(1), Jan 1993

5. L. Meertens

6. A.J.M.van Gasteren; On the Shape of Mathematical Arguments; Springer Verlag

7. Haskell Report

8. E.W. Dijkstra and Carel Scholten; Predicate Calculus and Program Semantics; Springer Verlag 1990

9. BrianKernighan and Dennis Ritchie; The C Programming Language Prentice Hall

10. BenjaminLee Whorf; Language Thought and Reality;

11. L.Wittgenstein; Tractacus Logico Philosophicus;

